
IN THIS CHAPTER

. Overview 113

. The JUnit Framework 114

. Creating a Test Case 116

. Running the Test 120

. Creating and Running a
Test Suite 122

. Custom JUnit Launch
Configurations 126

. Extensions to JUnit 127

6High-Grade Testing
Using JUnit

“Test, code, refactor, design. Repeat.”

—Anonymous

Overview
Test-driven development. Testing frameworks. JUnit,
Cactus, StrutsTestCase, HttpUnit, HtmlUnit, JWebUnit,
SwingUnit. These days there is almost as much to be
learned about testing APIs as the libraries with which you
are writing your code. JUnit, the most popular of the
current testing frameworks, was created by Erich Gamma
and Kent Beck. You may remember Erich Gamma as one of
the authors of the groundbreaking book Design Patterns.
Kent Beck, in addition to various contributions in software
analysis and design, is responsible in part for a small earth-
quake called Extreme Programming (sometimes called Agile
Programming so as not to upset the faint of heart).

Documentation, source code, and binaries for JUnit can be
found at http://www.junit.org, which will point you to
SourceForge (http://sourceforge.net/projects/junit/)
where the latest version can be found. However, you are
one of the select few who have downloaded a tool that
already has the latest version of the most popular testing
framework on the face of the planet. The real issue is why
you should use it.

Eclipse makes the creation and use of tests almost trivial
(almost because you still have to decide what to test and
how to test it). Having JUnit built in is not unique to
Eclipse as a Java IDE, but as an additional piece to an
already feature-rich IDE, it makes the decision to go with
Eclipse all the more easy.

08 6108 ch06 8/9/04 11:29 AM Page 113

CHAPTER 6 High-Grade Testing Using JUnit
114

I am not going to spend time trying to convince you that writing tests is good for you, your
programs, and your paycheck. What I will say is that without tests to prove your code works,
you don’t know for sure that it does work. Do tests prove that your code works in every
instance? Of course not. Your users will be certain to remind you of that. What tests will do
for you is guarantee that the situations you’ve planned for work, the situations that don’t
work fail gracefully, and bugs that have been squashed stay that way. Let’s take a look at how
you can do all this using Eclipse.

The JUnit Framework
The JUnit framework is made of a number of classes that take care of the nitty-gritty details
of running your tests, as well as running a GUI to visually display which of your tests have
passed and which have failed. From your perspective, you need to learn one class: TestCase.
Once you become comfortable with TestCase then you may, on occasion, use TestSuite.

The process of using JUnit can be summed up as follows:

1. Write a test class that subclasses TestCase. It should not be able to compile because you
have not yet written the class to be tested. Your first test has just failed.

2. Write the class that needs to be tested. Your first test now passes.

3. Add to the test class a test of functionality you have not yet written in the other class.
As your second test, this also fails.

4. Write the smallest amount of functionality in the other class. Your second test now
passes.

5. Test another bit of nonexistent functionality. This test fails.

6. Add the missing functionality. The test now passes.

By now you should see a pattern emerging. Write the test, which fails, and then write the
functionality for which the test is checking, which causes the test to pass. You start with the
simplest functionality and work your way up. As the functionality gets more complex, you
know that prior functionality continues to work. If prior functionality stops working, you
know it right away and you can fix it before the complexity grows out of hand.

Writing JUnit tests in Eclipse is only marginally different. In order to take advantage of the
JUnit Wizard, the class to be tested must exist. In Eclipse’s case, the previous list would look
like this:

1. Create an empty class to be tested.

2. Create a subclass of TestCase to test the other class.

3. Write a test of simple functionality of the other class. The test fails.

4. Write the simplest piece of functionality for the other class. The test should now pass.

08 6108 ch06 8/9/04 11:29 AM Page 114

5. Write another test and watch it fail.

6. Add the functionality that will cause the test to pass.

Perform steps 5 and 6 until it is time to go home, until you hit a milestone date, or until you
have to deliver your code. If you used use cases to drive your schedule and test-driven devel-
opment to prove that the use cases pass the good scenarios and know how to behave in the
bad scenarios, you win.

TestCase
When you write a test case, you subclass junit.framework.TestCase. In the same way that a
servlet subclasses HttpServlet so that the servlet engine knows how to manage its life cycle,
you are responsible for subclassing TestCase so the JUnit framework can walk your test object
through its life cycle. The TestCase API includes assert methods that you will use to confirm
the validity of results returned by the object under testing.

Let’s discuss what happens when a test case runs within Eclipse. The JUnit framework starts
up, loads the test class selected on the workbench (your test class does not need main()),
creates as many copies of your test case as there are methods that start with the word test
(for example, testFindCustomer()), and begins to run the test objects one at a time. Before
the test method is run, an initialization method called setUp() is called to give you the
opportunity to create whatever objects you need to make your test work. When your test
method completes, either with a success or failure, a cleanup method called tearDown() is
called so your code can safely dispose of used resources.

115
The JUnit Framework

The Granularity of Tests

A question that always comes up in discussions about tests and testing frameworks is, how many
tests (meaning assertions) should you put in a test method? The quick answer would be to put
one assertion per test method because it gives JUnit the opportunity to run all your tests rather
than just the ones that passed prior to the one that failed. However, the number of tests can get
rather high, in which case you would have an immense number of test methods, which would
be hard to maintain (the second argument against tests). The longer answer is, group associated
tests together as long as they make sense. Start with one test method per method being tested.
As you find that the methods are getting too long, break them up into functional test areas. In
other words, use refactoring as a way of controlling the inevitable onslaught of success.

TestSuite
A suite of tests can be run by creating a subclass of junit.framework.TestSuite. Within this
class, you would list the various subclasses of TestCase that you would like JUnit to run by
overriding suite(). When you create a test suite using Eclipse, the code generator uses code
markers so that it can regenerate the suite as often as you like. After you complete the
example, you will get a chance to create, and re-create, a test suite.

08 6108 ch06 8/9/04 11:29 AM Page 115

TestRunner: The JUnit GUI
So how does JUnit run within Eclipse? Do you simply select a
test and run it like a Java application? When JUnit, or one of
its variants, runs within Eclipse, it opens TestRunner, the GUI
used by JUnit to display the results of completed tests (see
Figure 6.1). The most visible part of TestRunner is the colored
bar that runs below the title bar. You will learn to question a
red bar when you expected a test to pass and a green bar
when you expected a test to fail. Below the colored bar are
three status values: how many tests of the available number
of tests have run, how many errors (non-JUnit exceptions)
occurred, and how many failures (assertion failures) occurred.
Below these counters are two tabs: The Failures tab lists the
methods that failed, and the Hierarchy tab lists all the
methods with either a red X (error), a grey X (failure), or a
green check (success).

Below the method list is the output of the currently selected
method. If the method succeeds, there should be no output.
If the result bar is red, expect to find output.

The title bar of TestRunner has five convenience buttons:

n Next or Previous Failed Test—Either of these buttons will take you directly to the
method that encountered a failure or error.

n Stop JUnit Test Run—In case the test class has encountered an infinite loop or has
simply decided to hang, you can kill JUnit from here.

n Rerun Last Test—The same as pressing Ctrl+F11, except it only runs the last JUnit test,
not the last class that was run.

n Scroll Lock—Used to keep the selected test and its output in sync.

Creating a Test Case
In order for you to get a good feel for how to use JUnit, let’s create a class that simply prints
out a greeting. The greeting is changeable, as is the name of the person being greeted.

CHAPTER 6 High-Grade Testing Using JUnit
116

FIGURE 6.1 JUnit’s TestRunner
displaying the red bar, signaling it is
not time to go home yet.

08 6108 ch06 8/9/04 11:29 AM Page 116

Create a Class
Start Eclipse and create a Java project called Greeter. Due to the way the JUnit Wizard works,
you need to create the class to be tested first. Create a new class called Greeter in package
example (you can create the package at the same time you are creating the class). The class
should be quite empty after the code generator is done creating it.

Create a Test Case
Let’s look at creating a JUnit test. With the Greeter
class selected in the Package Explorer, press Ctrl+N
(or you can right-click the Greeter class and select
New, Other). When the New dialog appears, select
Java, JUnit, JUnit Test Case (see Figure 6.2). Click
Next. Because this is the first time you are creating
a JUnit test, the JUnit Wizard will ask if you would
like it to add the JUnit JAR file to your class path.
Click Yes to go to the JUnit Test Case page.

If you selected the Greeter class before you pressed
Ctrl+N, the JUnit Test Case page should be almost
completely filled in. If the page does not appear to
be populated, click Cancel and start again.

This page lists all the information needed to gener-
ate the class:

n The name of the source folder to which the class should be written.

n The package into which the test class will go. You could put the test class into a differ-
ent package, but conventionally the test classes live in the same package as the class
they are testing. This gives the test class access to package/protected methods that may
need to be tested.

n The name of the class to be tested.

n The name of the test class. The wizard uses the convention of appending the word Test
to the end of any test classes. Other IDEs use the word Test as a prefix for the JUnit
classes they generate. If you come up with another convention, just be consistent.

n The super class of the test class. This will almost always be junit.framework.TestCase,
unless you come up with another class that you would prefer to extend. Be aware,
though: if the class does not ultimately extend TestCase, it will not work within the
JUnit framework.

117
Creating a Test Case

FIGURE 6.2 The New dialog with the JUnit
test case selected.

08 6108 ch06 8/9/04 11:29 AM Page 117

The only missing information needed is which of
the lifecycle methods you want the class to
include. Check setUp() and tearDown() and then
click Finish (see Figure 6.3).

When the GreeterTest class opens in the Java
editor, go to setUp() and remove the call to
super.setUp(). In its place create a Greeter object
and store it in an instance field called _greeter:

protected void setUp() throws Exception {

_greeter = new Greeter();

}

A light bulb and red X appear in the left margin
on the line where _greeter is declared. Click once
on the light bulb and, when the content assist
window opens, double-click Create Field _greeter.
Save the file once the instance field is created.

The code in setUp() affords you the opportunity to single-source the creation of objects used
through the test class. Because all your tests will need a Greeter object, setUp() is an ideal
place to create it.

Next, empty out the tearDown() method and set _greeter to null:

protected void tearDown() throws Exception {

_greeter = null;

}

Now, no matter what happens, you will always have a good object to work with before the
test starts, and the object will always be released to garbage collection when the test
completes. This may not seem like a big deal for a single test, but you can safely assume that
you will have dozens, hundreds, maybe even thousands of tests running as your code devel-
opment progresses.

One of the things we want the Greeter class to do is to return a greeting for display. A string
returned as a result for display should not be null. (Yes, I know there are plenty of reasons
why you might want a null returned from a method, but not in this case.) Our first test is
now defined: a call to the method that returns the greeting should not return null. Above
setUp(), define the method testGreeting() as follows:

public void testGreeting() {

}

CHAPTER 6 High-Grade Testing Using JUnit
118

FIGURE 6.3 The JUnit Test Case page with
the two main life cycle methods selected.

08 6108 ch06 8/9/04 11:29 AM Page 118

Within testGreeting(), make a call to the Greeter method getGreeting():

public void testGreeting() {

String actual = _greeter.getGreeting();

}

Yes, it is true that there is no method in the Greeter class called getGreeting(). Remember
step 3 of the development of JUnit tests? Your first test just failed. In order to make it
succeed, you need to add the method to the Greeter class. Eclipse makes this a trivial task.
Just single-click the light bulb and double-click the suggested fix in the content assist
window:

Create method ‘getGreeting()’ in Greeter.java

The Greeter class comes forward, showing you the new method that has just been added.
Save the Greeter.java.

Return to the GreeterTest editor window and save the file. The light bulb is gone, and our
test-by-implication test is now successful. Because your first real test is to make sure you don’t
get a null from the call to getGreeting(), you need to take the result of the call and compare
it against an expected result. By extending TestCase, you have an extensive selection of
methods to check the result of a call and either do nothing if the result was as expected or
complain if the result was invalid.

TestCase extends the Assert class, which has the following assertion methods:

n assertEquals()

n assertTrue()

n assertFalse()

n assertNotNull()

n assertNull()

n assertNotSame()

n assertSame()

n fail()

All the assertXXX() methods will throw an AssertionFailedError if the value they are
passed is false. The fail() method throws an AssertionFailedError as soon as it is called.
Each one gives you the choice of using its default error message or one you supply. For the
test in testGreeting(), you could make a call to assertEquals() and compare the result to
null, but the assertNotNull() method will work much better:

119
Creating a Test Case

08 6108 ch06 8/9/04 11:29 AM Page 119

public void testGreeting() {

String actual = _greeter.getGreeting();

assertNotNull(“getGreeting() returned null.”, actual);

}

Running the Test
Save your files and make sure that GreeterTest is the active editor. From the main menu,
select Run, Run As, JUnit Test. You already know that the getGreeting() method is going to
return a null, so running TestRunner should give you a red bar (see Figure 6.4). If a green bar
appears, make sure you are calling the proper assert method and that you are passing in the
result of the call to getGreeting().

Let’s fix getGreeting() so it does not return a null:

public String getGreeting() {

return “”;

}

Simply returning an empty string should cause the test to be successful, and pressing
Ctrl+F11, which runs the last thing you executed, causes TestRunner to return a green bar.
Success!

CHAPTER 6 High-Grade Testing Using JUnit
120

S H O P TA L K
White Box Testing Versus Black Box Testing

A black box test is a test run on code without you knowing its internal makeup. A white box test is a
test where you know exactly what is going on in the code. JUnit tests are usually white box tests,
but you could also write black box tests against third-party vendor libraries.

When I first started writing tests, I found it a little disconcerting to know that I was writing tests to
prove that code would behave in the fashion I had written it. Checking whether a method returns
(or doesn’t return) an expected result seemed trivial, especially when I knew what the code was
doing. Why should I check, for example, that a method does not return a null when I know it will
never return a null? There was no code anywhere (in the code I had written) that could possibly
return a null.

I found out the reason as soon as I used someone else’s code in my algorithm.

If the set of acceptable values is known, a test needs to be written to check that the result does not
fall outside of this set or, if the value does fall outside the acceptable set, that the bad value is
returned under known conditions.

08 6108 ch06 8/9/04 11:29 AM Page 120

FIGURE 6.4 The TestRunner GUI with the expected red bar and the message passed in as the first argument
to assertNotNull().

If this were a chapter on writing tests in an incremental fashion, here are the next tests you
would try to write:

1. Test for a default greeting.

2. Test the ability to change the current greeting with a null (throw an exception), a blank
string (throw an exception), and a nonblank string.

3. Test whether the greeting can be reset to the default.

4. Test for a default greeting that can be personalized.

5. Test the ability to change the personalizable greeting with a null (throw an exception),
a blank string (throw an exception), and a nonblank string.

6. Test whether the personalizable greeting can be reset to the default.

The number of things that can be implemented in the Greeter class is not insignificant, but
you can check them reliably by adding slightly more complex tests in each iteration. But I
digress.

When you discover a test that fails and the code has reached a complexity level where simply
eye-balling it does not suggest where the problem may be, you need to debug the code
through your test. Debugging a JUnit test is the same as debugging any other Java code: set a
breakpoint in the test code or in the class being tested and from the main menu select Run,
Debug As, JUnit Test. The Debug perspective opens and displays TestRunner at the bottom of
the screen after the first full run, with the debug views and editor above it (see Figure 6.5).

121
Running the Test

08 6108 ch06 8/9/04 11:29 AM Page 121

FIGURE 6.5 The Debug perspective with the JUnit TestRunner displaying the methods to be run.

Everything discussed so far would give you the impression that you can only run tests at the
object level. In fact, you can select one method for execution to the exclusion of all the other
test methods. Select the method to be executed from the Package Explorer or the Outline
view, or double-click the method name in the Java editor. From the main menu, select Run,
Run As, JUnit Test. Only the selected method will be run within JUnit. Unfortunately, you
can only select one method at a time; this is not an arbitrary selection.

Creating and Running a Test Suite
As mentioned before, a JUnit test suite contains one or more tests that should be run as a
unit. TestSuite is a composite object that contains Test objects (including other test suites)
that are prepared to run all or one of their tests. When the JUnit framework starts, it uses
reflection to make a call to the suite() method of the object created from the incoming class
type. Because JUnit uses reflection, the only thing the class has to define to work within the
framework is suite(). The incoming class does not have to be a type of Test. The suite()
method must return an object of type Test so that the framework can begin running tests.
The suite() method returns a Test object that contains whatever test objects you decide.
Internally, JUnit performs the same operation, only it creates enough objects of your test type
to run each individual method.

CHAPTER 6 High-Grade Testing Using JUnit
122

08 6108 ch06 8/9/04 11:29 AM Page 122

To make this explanation clearer, let’s look at a class that defines suite() and returns a
TestSuite object composed of a combination of single-method tests and multiple-method
tests:

package example;

import junit.framework.Test;

import junit.framework.TestSuite;

public class AllTests {

public static Test suite() {

TestSuite suite = new TestSuite(“Test for example”);

// Only run the named methods.

suite.addTest(new TimeSeriesServiceTest(“testGetTimeSeries”));

suite.addTest(new OTCQuoteServiceTest(“testGetOTCQuote”));

suite.addTest(new QuoteServiceTest(“testGetQuote”));

// Run all of the tests contained within each class.

//$JUnit-BEGIN$

suite.addTestSuite(OTCQuoteServiceTest.class);

suite.addTestSuite(QuoteServiceTest.class);

suite.addTestSuite(TimeSeriesServiceTest.class);

//$JUnit-END$

return suite;

}

}

The AllTests class has the following features:

n It does not extend any JUnit class.

n It declares a suite() method that will return an object of type Test.

n Within suite(), a TestSuite object is created.

n The TestSuite object has three method-specific tests added to it through calls to
addTest(). Because method names are being passed into the test class constructors,
only those tests will be run.

n The TestSuite object has three test classes added to its internal list through calls to
addTestSuite(), and all the tests within each test class will be executed.

123
Creating and Running a Test Suite

08 6108 ch06 8/9/04 11:29 AM Page 123

If the three test classes mentioned in the AllTests class have two test methods each, the call
sequence might look something like this:

In testGetTimeSeries().

In testGetOTCQuote().

In testGetQuote().

In testGetOTCQuote().

In testGetOTCQuoteName().

In testGetQuote().

In testGetQuoteSymbol().

In testGetTimeSeries().

In testGetTimeSeriesFloat().

The three single tests were run first. Next the test
classes were called, in turn, and all their tests were
run before moving on to the next test object. All
these methods have a System.out.println() line,
but normally the tests are silent if they succeed.

To generate a class that creates a TestSuite object,
you open the New dialog and select Java, JUnit,
TestSuite and then click Next. The JUnit Test Suite
page will display the source folder in which the
code will be generated, the package to which the
class will belong, and the name of the class, which
defaults to AllTests (see Figure 6.6). In the list
below the test suite name are the various JUnit
tests the builder recognizes. You can select zero or
more JUnit tests for inclusion in TestSuite.

Also for the purposes of the example, I have
deleted the comments from the code that was
generated by the JUnit Wizard. Let’s look at what
was created:

package example;

import junit.framework.Test;

import junit.framework.TestSuite;

public class AllTests {

public static Test suite() {

TestSuite suite = new TestSuite(“Test for example”);

//$JUnit-BEGIN$

CHAPTER 6 High-Grade Testing Using JUnit
124

FIGURE 6.6 The JUnit Test Suite page with
all the available tests checked.

08 6108 ch06 8/9/04 11:29 AM Page 124

suite.addTestSuite(OTCQuoteServiceTest.class);

suite.addTestSuite(QuoteServiceTest.class);

suite.addTestSuite(TimeSeriesServiceTest.class);

//$JUnit-END$

return suite;

}

}

The first line in AllTests.suite() is the instantiation of a TestSuite object. TestSuite, as a
composite object, is the container of the various tests you want to run. The next line is a
code marker used by the JUnit builder in case you decide to regenerate the suite. Anything
outside of the code markers will be saved, whereas anything within the markers will disap-
pear when you regenerate the code. The next line of code adds a class definition to the
TestSuite object using addTestSuite(). This has the effect of creating a new TestSuite
object and adding all the methods that start with test to the new TestSuite object, which is
then added to your topmost suite. At the end of all this, suite() returns the TestSuite
object.

What happens as you add and remove individual tests in the course of development?
Regenerate the test suite class. You can do this in one of two ways:

125
Creating and Running a Test Suite

FIGURE 6.7 The JUnit Test Suite page
displaying the warning about suite() being
replaced.

n Press Ctrl+N (which opens the New dialog),
select Java, JUnit, Test Suite, and then click
Next. The JUnit Test Suite page will display a
warning that suite() already exists and that
it will be replaced unless you give the test
suite class a new name (see Figure 6.7).

n Right-click the test suite class in the Package
Explorer and select Recreate Test Suite from
the pop-up menu. The Recreate Test Suite
dialog will list the available JUnit tests for
you to choose from. Select the tests you want
to have appear in the code and click OK (see
Figure 6.8).

Running the test suite is no different from running
a regular JUnit test (you select Run, Run As, JUnit
Test). If you try to run the test suite as a regular
Java class, it will not work (unless you add main()
and a call to TestRunner).

I have been very careful not to say that the JUnit Wizard creates a TestSuite class. The
wizard does not. The wizard generates a class that contains the suite() method, which will
instantiate a TestSuite object and return it to any callers.

08 6108 ch06 8/9/04 11:29 AM Page 125

In addition, the JUnit Wizard only creates test suites made
up of complete tests. If you want to have the suite()
method call certain test methods, you have the task of
adding by hand the calls to addTest() in suite().

Custom JUnit Launch
Configurations
By selecting to run the JUnit test (which is either a subclass
of TestCase or a test suite) using Run, Run As, JUnit Test,
you allow the Launcher to create a default launch configura-
tion and execute the TestRunner GUI using this default
configuration. If you were to open the Run dialog (by select-
ing Run, Run), you would see in the Configurations list to
the left the JUnit category with GreeterTest as a configura-
tion entry (you did not get the opportunity to create all the
classes for the test suite example, so there is no launch
configuration for it). Running a JUnit test with the default
launch configuration will do the job for most runs; however,
creating a custom launcher lets you decide whether you want
to run one test or many (see Figure 6.9).

CHAPTER 6 High-Grade Testing Using JUnit
126

FIGURE 6.8 The Recreate Test
Suite dialog listing the available JUnit
tests that can be added to suite().

FIGURE 6.9 The Run dialog of the Eclipse Launcher.

08 6108 ch06 8/9/04 11:29 AM Page 126

The Launcher Run dialog has the base functionality discussed in previous chapters (config-
urable name, configurable environment variables, and sharable launch configurations as well
as the ability to create new configurations, pass arguments both to the VM and the running
class, select a JRE, and have a custom source path). The Test tab allows you to do the
following:

127
Extensions to JUnit

FIGURE 6.10 The Folder
Selection dialog of the Eclipse
Launcher Test tab.

n Run a single test—You can use the Browse button to
select a new project, or you can use the Search button
to display the list of available tests. You can only
select one.

n Run all the tests from either a project, a package, or
a folder—Selecting the radio button for this choice
enables the Select button, which, when clicked,
displays a dialog listing the available projects, pack-
ages, and folders (see Figure 6.10).

Finally, the check box labeled Keep JUnit Running After a
Test Run When Debugging is useful only if you are using a
JDK that supports the hot-swapping of code. When you are
debugging a JUnit test and you modify and recompile the
code, the hot swap will only work if you have checked the
Keep JUnit Running… box.

To create a new JUnit configuration, remember to select either the JUnit category in the
Configurations list or one of the JUnit configurations and then click New.

Extensions to JUnit
Not to be outdone in the open-source marketplace for testing frameworks, a number of addi-
tional packages have emerged that allow testing of Java technologies that are not easily tested
due to their inclusion in application frameworks. For example, servlets, JSPs, and EJBs only
run within a container framework that the average JUnit test cannot easily test against.

Developers abhor a vacuum. Almost before anyone realized how cool JUnit really was, exten-
sions were already being written to allow for the testing of client-side and server-side Java
components in their native environment. Here are some examples:

n Cactus—A server-side testing framework for the testing of servlets, EJBs, and other
server-side Java technologies.

n HttpUnit/HtmlUnit/jWebUnit—Various frameworks for testing Web applications. The
best thing about testing at this level is that the tests are really user-level tests. Pick a use
case and write your HttpUnit, HtmlUnit, or jWebUnit test as proof that the use-case
scenario works based on how the user acts and reacts to the system and that the system
behaves predictably when the use-case failure scenarios occur.

08 6108 ch06 8/9/04 11:29 AM Page 127

n JMXUnit—A testing framework for JMX Beans.

n StrutsTestCase—A testing framework for Struts.

n VirtualMock—An AOP-based framework that uses the concept of mock objects, which
allow for the testing of objects without concern as to the objects the objects being
tested call. A mock object is an object that returns predictable values to the object
under test. For example, database functionality is always difficult to test due to the
necessary setup involved in making the tests repeatable. If the objects to be tested call
mock database objects, you can test these objects based on what they believe they are
receiving rather than what they would actually receive.

Please do not take inclusion in this list as an endorsement as to the usefulness of the these
frameworks. Their usefulness will vary depending on your needs and where the developers of
the frameworks are with their projects. However, performing a quick search on SourceForge
results in the following available testing frameworks and utilities: JFCUnit, StrutsTestCase,
jWebUnit, JUnitEE, Pounder, Artima Suite Runner, Cricket Cage, JUnitEJB, JXUnit,
GroboUtils, JUnitDoclet, NoUnit, AgileDox JUnit-addons, Quilt, JUB, Hansel, and JFunc. This
is not a complete list, and I expect it to grow.

Cactus has emerged as one of the more popular server-side testing pieces for Java. It tests
server-side components from the safety of a client-side position.

Using a Non-Plug-in-Based JUnit Extension
As of the writing of this chapter, a Cactus plug-in for Eclipse has not seen the light of day
(well, it did and then it was pulled back into the closet kicking and screaming). However, all
is not lost. You can still write Cactus tests with the existing JUnit Wizard. A nontrivial
example will explain how to set up everything needed to make that happen.

Let’s begin by installing Tomcat and Cactus. When those two items are ready to go, you will
write a sample servlet and its test and then display the results of the test.

In order to run a servlet, you need a servlet engine. If you don’t already have Tomcat, you
can download it from http://jakarta.apache.org/site/binindex.cgi and install it in your
favorite location (for example, c:\tools\jakarta-tomcat-5.0.25). From the same Web page,
you can also download Cactus (scroll up to look for it and install Cactus into your favorite
location—for example, c:\tools\jakarta-cactus-13-1.6.1). Your versions will probably be
newer.

At this stage, you have completed the most difficult part of this example: downloading and
installing the latest versions of Tomcat, and Cactus. Cactus needs no configuration, and you
will configure Eclipse to run Tomcat from the Eclipse Launcher.

In a more complete J2EE environment, such as MyEclipse from Genuitec, there would be
editors, wizards, and builders specific to servlets and JSPs. However, due to the addition of
Tomcat support in Eclipse 3.0, you can develop basic J2EE applications by setting up the
proper directory structure in your project and creating a valid web.xml file.

CHAPTER 6 High-Grade Testing Using JUnit
128

08 6108 ch06 8/9/04 11:29 AM Page 128

Create a servlet and deploy it to Tomcat using the following steps:

1. Create a new project by pressing Ctrl+N. When the New dialog opens, select Java
Project and then click Next. Enter the project name CactusTest and click Next. In the
Java Settings page on the Source tab, set the Default Output Folder to CactusTest/WEB-
INF/classes. Click the Libraries tab, click Add External JARs, and navigate to <Tomcat
Install Directory>/common/lib. Select servlet-api.jar and click Open. Click Finish
to close the New dialog. The use of the WEB-INF directory gives you the Web application
structure you will need when you deploy to Tomcat, and servlet-api.jar gives you
the J2EE symbols needed to compile servlets.

2. Create a servlet class by pressing Ctrl+N. From within the New dialog, select Java, Class
and then click Next. Enter example for Package, HelloWorldServlet for Name, and
javax.servlet.http.HttpServlet for Superclass. Click Finish.

3. HelloWorldServlet will open in the Java editor. Right-click in the editor and click
Source, Override/Implement Methods. When the Override/Implement Methods dialog
opens, check doGet() and click OK. Delete the TODO line and super.doGet(arg0, arg1).
Add code to get the PrintWriter from the HttpServletResponse object and write a
message. If you don’t add code to produce some output, the servlet will fail to run:

protected void doGet(HttpServletRequest arg0, HttpServletResponse arg1)

throws ServletException, IOException {

PrintWriter out = arg1.getWriter();

out.print(“This is a message from the HelloWorldServlet!”);

}

129
Extensions to JUnit

FIGURE 6.11 The New dialog preparing to
create an empty web.xml file.

Fix any compile errors by pressing
Ctrl+Shift+O to add any missing imports.
Save the file.

4. Create a web.xml file by pressing Ctrl+N.
From the New dialog, select Simple, File and
then click Next. Make sure the parent folder
is CactusTest/WEB-INF and enter web.xml as
the filename (see Figure 6.11). Click Finish.

5. In the web.xml file, create a Web application
entry that maps your HelloWorldServlet to
the servlet name helloworld. This allows
you to access the servlet using the name
helloworld. Save the file:

08 6108 ch06 8/9/04 11:29 AM Page 129

<!DOCTYPE web-app PUBLIC

‘-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN’

‘http://java.sun.com/j2ee/dtds/web-app_2_3.dtd’>

<web-app>

<servlet>

<servlet-name>helloworld</servlet-name>

<servlet-class>example.HelloWorldServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>helloworld</servlet-name>

<url-pattern>/helloworld</url-pattern>

</servlet-mapping>

</web-app>

CHAPTER 6 High-Grade Testing Using JUnit
130

FIGURE 6.12 The Export dialog, set up to copy the
project files into the Tomcat webapps directory.

6. Deploy the CactusTest project to
Tomcat. The simplest way to do that
is to export CactusTest into the
Tomcat webapps directory. In the
Package Explorer, right-click the
CactusTest project and select Export
from the pop-up menu. When the
Export dialog opens, select File
System and click Next. On the File
System page, select the CactusTest
project in the window to the left and
uncheck the .classpath and
.project files in the window to the
right. Click the plus sign to the left
of the CactusTest node to reveal the
WEB-INF, classes, and src directo-
ries. Check only the WEB-INF direc-
tory. This will export everything
under WEB-INF, including classes
and web.xml. The To Directory field

needs to reference the Tomcat webapps directory. Click Browse and navigate to your
Tomcat installation directory. When you find it, select it and click New Folder. Enter
the folder name CactusTest, press Enter, and click OK to see the export directory target
(see Figure 6.12). If the To directory does not display a path that includes CactusTest,
click Browse, navigate to it, and click OK. Click Finish to deploy your project to
Tomcat.

08 6108 ch06 8/9/04 11:29 AM Page 130

Browse, navigate to the Tomcat installation directory, and click OK to return to the Edit
String Substitution Variable dialog (see Figure 6.13). Click OK to close the Edit String
Substitution Variable dialog and then click OK to close the Preferences dialog.

8. From the main menu, select Run, Run. When the Run dialog opens, select Tomcat
Server from the Configurations list and then click New. For Name, enter CactusTest,
and for Web Application Root, enter /CactusTest (see Figure 6.14). Click Run. When
the Run dialog closes, the Console view will come forward and begin to output Tomcat
logging statements. You are ready to check your servlet when the Console has a state-
ment similar to this:

INFO: Server startup in 9494 ms

131
Extensions to JUnit

FIGURE 6.13 The catalina_home
variable set with the Tomcat home
directory.

7. In order to start Tomcat from within Eclipse, you need
to create a Tomcat launch configuration. Eclipse
already defines a string-substitution variable called
catalina_home, but it is not assigned a default value.
From the main menu, select Window, Preferences and
Run/Debug, String Substitution. The Variable column
lists catalina_home with an empty Value. Select the
catalina_home row and click Edit. When the Edit
String Substitution Variable dialog opens, click

FIGURE 6.14 The Run dialog with a new Tomcat Server configuration for the CactusTest Web application.

9. Open a browser and set the URL to http://localhost:8080/CactusTest/helloworld.
You should see your message in the browser (see Figure 6.15).

08 6108 ch06 8/9/04 11:29 AM Page 131

FIGURE 6.15 The HelloWorldServlet output displayed in a browser.

At this point, you now have a working servlet that in practice may or may not have a JSP to
which it is redirecting. Now let’s take a look at what it would take to run a test on it.

The intention of this part of the chapter is not to explain the hows and whys of Cactus, but
to show you how you can implement Cactus tests even without direct Cactus support within
Eclipse. However, in order to appreciate what needs to be done, you will need a certain
amount of Cactus background.

Cactus, as a server-side testing framework, has both a client-side and a server-side compo-
nent. The server-side piece runs on the same server as the servlet, and the client-side compo-
nent receives messages from the server-side piece via sockets. In order for that to work, you
will need to update the Web app web.xml file and carry along certain JAR files that must be
deployed on the server with the servlet and the servlet test code.

Here’s the short list of things that need to be done to write Cactus tests in Eclipse:

1. Copy a collection of JAR files needed by Cactus into WEB-INF/lib. This is for the Cactus
test that runs on the Web server. These will be deployed along with the servlet to be
tested.

2. Add a collection of JAR files to the classpath of the project. This way, you can run the
Cactus test as a client so that it can connect to the server-side Cactus test.

3. Update web.xml to include the Cactus filter and servlet mappings.

4. Write a Cactus test either by extending ServletTestCase or by instantiating a
ServletTestCase object within a JUnit test. If Tomcat is properly set up within Eclipse,
you can run the Cactus test as a standalone JUnit test and it will communicate with the
server-side code returning the results of the tests.

Cactus can be used to test servlets, JSPs, EJBs, and any server-side Java components. For this
example, because you are going to write a servlet test, you will not look at some of the other
test classes you could have extended. The CactusTest project will contain both the servlet to
be tested and the test code.

Let’s fill in the preceding steps. Before you create the test class, you need to import the
following JAR files into the WEB-INF/lib directory for use by the Cactus server-side piece (all
the JAR files are from the Cactus install directory):

CHAPTER 6 High-Grade Testing Using JUnit
132

08 6108 ch06 8/9/04 11:29 AM Page 132

n aspectjrt-1.1.1.jar

n cactus-1.6.1.jar

n commons-logging-1.0.3.jar

n commons-httpclient-2.0.jar

n junit-3.8.1.jar

Add these to your CactusTest project by right-clicking WEB-INF and selecting Import from
the pop-up menu. Because you want to copy the JAR files into the project, when the Import
dialog opens, from the Select page choose File System as the import type and click Next.

From the File System page of the Import
dialog, click the top Browse button to navigate
to the lib directory of the Cactus installation
(for example, C:\tools\jakarta-cactus-13-
1.6.1\lib) and select the lib node from the
tree view in the window to the left. When you
select the lib node, the available JAR files in
that directory will be listed in the window to
the right. Select the five JAR files listed previ-
ously (even if the version numbers are differ-
ent—they should be higher [see Figure 6.16]).
Change the Into Folder from

CactusTest/WEB-INF

to

CactusTest/WEB-INF/lib

and click Finish. Your WEB-INF directory now
has a lib directory, and it contains the Cactus
JARs. These JAR files will be used by your test
when it runs on the server.

The next step is to add a collection of JAR files needed by Cactus onto the project classpath.
Open the project’s Properties dialog by right-clicking the CactusTest project name in the
Package Explorer and selecting Properties from the pop-up menu. Select Java Build Path from
the list to the left and the Libraries tab from the Java Build Path page to the right. Click Add
External JARs and navigate to your Cactus installation lib directory (again, for example,
C:\tools\jakarta-cactus-13-1.6.1\lib). Holding down the Ctrl key, select the following
JAR files:

n aspectjrt-1.1.1.jar

n cactus-1.6.1.jar

133
Extensions to JUnit

FIGURE 6.16 The Import dialog listing the JAR
files found in the Cactus installation lib directory.

08 6108 ch06 8/9/04 11:29 AM Page 133

n commons-httpclient-2.0.jar

n commons-logging-1.0.3.jar

n junit-3.8.1.jar

Click Open to select these five JAR files. They will be added to the Libraries tab’s build path
(see Figure 6.17). Click OK.

CHAPTER 6 High-Grade Testing Using JUnit
134

FIGURE 6.17 The five JAR files needed from the Cactus installation by the client-side Cactus test.

The third step is to add the Cactus-specific filter and servlet information into the Web appli-
cation web.xml file:

<!DOCTYPE web-app PUBLIC

‘-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN’

‘http://java.sun.com/j2ee/dtds/web-app_2_3.dtd’>

<web-app>

<filter>

<filter-name>FilterRedirector</filter-name>

<filter-class>org.apache.cactus.server.FilterTestRedirector</filter-class>

</filter>

<filter-mapping>

<filter-name>FilterRedirector</filter-name>

<url-pattern>/FilterRedirector</url-pattern>

</filter-mapping>

08 6108 ch06 8/9/04 11:29 AM Page 134

<servlet>

<servlet-name>helloworld</servlet-name>

<servlet-class>example.HelloWorldServlet</servlet-class>

</servlet>

<servlet>

<servlet-name>ServletRedirector</servlet-name>

<servlet-class>org.apache.cactus.server.ServletTestRedirector</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>ServletRedirector</servlet-name>

<url-pattern>/helloworld/ServletRedirector</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>helloworld</servlet-name>

<url-pattern>/helloworld</url-pattern>

</servlet-mapping>

</web-app>

This web.xml file is the complete file you will use. It contains both the HelloWorldServlet
servlet mapping as well as the filter and servlet information needed to call Cactus (the shaded

code). The only item of note is the way the Cactus
ServletRedirector servlet is defined: Because our
HelloWorldServlet is mapped to the name helloworld, the
ServletRedirector must be defined relative to the servlet to
be tested, so /helloworld is placed before ServletRedirector
in the <url-pattern> tag of the servlet mapping.

After all that setup, it is time to create a Cactus test. Select
HelloWorldServlet in the Package Explorer view. Create a
class that extends ServletTestCase by pressing Ctrl+N to
open the New dialog and selecting Java, JUnit, JUnit Test
Case. Click Next. In the JUnit Test Case page, all the standard
information should be filled in for you. The one change you
need to make is to change the superclass to ServletTestCase.
Click Browse, enter ServletTest in the topmost text field of
the Superclass Selection dialog, and select ServletTestCase
(see Figure 6.18). Click OK to close the Superclass Selection
dialog. Click Finish on the New JUnit Test Case page to close
the dialog and accept the class information. The
HelloWorldServletTest opens in the Java editor and is quite
empty.

135
Extensions to JUnit

FIGURE 6.18 The Superclass
Selection dialog displaying the
Cactus ServletTestClass.

08 6108 ch06 8/9/04 11:29 AM Page 135

A standard JUnit class has a setUp() method, a tearDown() method, and one or more test
methods that start with the word test. Cactus can use the setUp() and tearDown() methods,
but it also adds the capability to add custom setup and teardown methods per test. The
custom setup and teardown methods are called begin<name of method being tested>() and
end<name of method being tested>(). The test method for the servlet is going to test the
doGet() method, so you could create three methods: beginDoGet(), endDoGet(), and
testDoGet(). For this example, you will only create the last two. To check whether the call to
doGet() streamed information to the caller, you are going to check the servlet output in
endDoGet().

For the purposes of this exercise, you are only going to look at calling doGet(), but Cactus
allows you to call any method defined in the servlet. Two objects created by Cactus to
predictably test servlets are WebRequest and WebResponse. WebRequest represents an HTTP
request message to the servlet, and WebResponse represents the HTTP response from the
servlet. When endDoGet() is called, its single argument is going to be a WebResponse object.
You will use it to find out what the servlet printed out, as shown here:

package example;

import java.io.IOException;

import javax.servlet.ServletException;

import org.apache.cactus.ServletTestCase;

import org.apache.cactus.WebResponse;

public class HelloWorldServletTest extends ServletTestCase {

public void testDoGet() {

HelloWorldServlet servlet = new HelloWorldServlet();

try {

servlet.doGet(request, response);

} catch (ServletException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

public void endDoGet(WebResponse response) {

String actual = response.getText();

CHAPTER 6 High-Grade Testing Using JUnit
136

08 6108 ch06 8/9/04 11:29 AM Page 136

String expected = “This is a message from the HelloWorldServlet!”;

assertNotNull(actual);

assertEquals(expected, actual);

}

}

The testDoGet() and endDoGet() methods are quite small. To test a servlet, Cactus asks that
you instantiate your servlet in the test method as well as check its response in the end
method. The code in testDoGet() does the following:

n Instantiates the servlet.

n Calls doGet() and passes in predefined request and response objects. The try/catch
code is there as protection in case the method call throws an exception.

As you’ll recall, the doGet() method of HelloWorldServlet gets the PrintWriter object and
then prints a greeting. The testDoGet() method makes the call to doGet(), and the test
method endDoGet() gets the text from the response object and compares what it finds to
what it was expecting.

Your Web application needs to be deployed to Tomcat. Right-click the CactusTest project and
select Export from the pop-up menu. Select File System from the Select page and click Next.
Select and open the CactusTest node and uncheck classes and src in the list to the left and
uncheck .classpath and .project in the list to the right. Make sure To Directory is set to the
Tomcat webapps/CactusTest directory. Click Finish. When the Question dialog opens asking
if you want to overwrite existing files, click Yes To All.

There is only one thing left to do before you run the test: You need to create a launch config-
uration to give the Cactus framework the URL to use in calling the servlet. Select
HelloWorldServletTest in the Package Explorer and select Run, Run from the main menu. In
the Run dialog, select any of the JUnit tests or the JUnit node and click New. A new configu-
ration page appears with as much information as the system could glean from the file you
selected before opening the dialog. The only thing left for you to configure is the URL for
Cactus to use in testing the servlet. Even though you could pass Cactus the URL to use by
setting up a cactus.properties file, you will instead put the URL in an environment variable
that the JVM will place in the runtime environment. Click the Arguments tab and enter the
following in the VM Arguments area (see Figure 6.19):

-Dcactus.contextURL=http://localhost:8080/CactusTest/helloworld

Click Apply and then click Close to shut down the Run dialog. You’re done! Time to run the
test.

137
Extensions to JUnit

08 6108 ch06 8/9/04 11:29 AM Page 137

FIGURE 6.19 The Run dialog with the environment variable entry for cactus.contextURL.

If you have not stopped Tomcat since you last started it, go to the Console view and click the
red square button located on its toolbar (it is the first button on the left). The Console view
title will display a message similar to the following:

Console (<terminated> CactusTest [TomcatServer] ...

Restart Tomcat from within Eclipse by opening the Launch
Configuration dialog (select Run, Run and then select Tomcat Server,
CactusTest). Click Run. The Console view should have fresh output from
the Tomcat server. When the Console states that the server has started,
you are ready to run the Cactus test using JUnit.

Check that the servlet is available by opening a browser and going to
http://localhost:8080/CactusTest/helloworld. You should see the
same page as before with your welcome message displayed.

Select HelloWorldServletTest in the Package Explorer. From the main
menu select Run, Run As, JUnit Test. The Launcher will use the launch
configuration you just created and will start the JUnit TestRunner with
HelloWorldServletTest as its only test class. If all goes well, the
TestRunner GUI will open and display the green bar of success (see
Figure 6.20). Click the Hierarchy tab to see that testDoGet() was run
and that it succeeded.

CHAPTER 6 High-Grade Testing Using JUnit
138

FIGURE 6.20 The
JUnit TestRunner display-
ing the green bar of
success for the Cactus
servlet test.

08 6108 ch06 8/9/04 11:29 AM Page 138

If you already had the TestRunner GUI open, it may not come to the front if the test passes,
so click the JUnit tab to see it.

The test that just ran went through the following steps, assuming Tomcat is running and the
servlet is available (this is a very abbreviated version of the actual process):

n The client code, HelloWorldServletTest, ran and performed standard JUnit initializa-
tion.

n The Cactus framework looked for the beginDoGet() method. Because you did not write
beginDoGet(), this did not do anything.

n Cactus opened a connection to the ServletRedirector running within Tomcat. The
ServletRedirector was deployed with the HelloWorldServlet and will take care of
running the server-side component of the test.

n ServletRedirector reinstantiated HelloWorldServletTest on the server side within
Tomcat and called testDoGet(), which created an instance of the HelloWorldServlet.
Because HelloWorldServletTest was running within the servlet engine, it safely created
HelloWorldServlet and was able to call any and all methods available in the
HelloWorldServlet API.

n When testDoGet() completed, ServletRedirector returned to the client side, which
promptly called endDoGet(). The endDoGet() method received the WebResponse object,
which contained the text output by HelloWorldServlet.

All this is independent of Eclipse. The most interesting thing about the Cactus test is that
you are able to run the server side and client side within one environment.

So what did it really take to complete these steps? You copied a number of JAR files into WEB-
INF/lib so that the server-side code would work. You also updated the web.xml file to
support the Cactus ServletRedirector, and you put a number of JAR files in the project’s
classpath so the client-side component would work. You wrote a test that extended a Cactus
base class, you deployed the code to Tomcat, and then you ran your test code as a JUnit test.

This example may have seemed like it needed a lot of setup. In the normal course of your
day-to-day development, you will probably use a more comprehensive plug-in to make the
development of your J2EE application simpler. Plug-ins such as Lomboz and MyEclipse not
only control the configuration, starting, and stopping of application servers, but they also
create support files like web.xml.

Perhaps by the time this book comes out the Cactus Eclipse plug-in will be released again,
and the preceding steps will be reduced a bit. Go to http://jakarta.apache.org/cactus/
integration/eclipse/index.html to check on the plug-in’s progress. Better yet, join in and
help to get it ready.

139
Extensions to JUnit

08 6108 ch06 8/9/04 11:29 AM Page 139

Many JUnit (or JUnit-like) extensions are available for you to choose from. The amount of
support varies, depending on the current popularity of the tool and whether or not it
behaves well with existing frameworks. Take a stroll through JUnit.org and SourceForge.net to
look for help in your testing efforts.

To quote Mae West, “Too much of a good thing can be wonderful!”

CHAPTER 6 High-Grade Testing Using JUnit
140

Ant Support for JUnit

Ant already has a task tag called junit that will take care of running your tests in a batch
mode. In addition, Ant also has a task called junitreport that will take care of generating a
report with useful information about the test run.

S H O P TA L K
Test/Integrate Daily

Something we will not discuss at any length is the fact that even though we develop our software
using tools such as Eclipse, we will rarely deploy the files created by the IDE. Build tools, such as
Ant, should be used to extract, build, and deploy the final production systems. In many cases,
what is missing is the additional step of checking the integrity of the system about to be deployed.

In order to prove the integrity of a system, it is necessary to run all the tests written by the various
developers in one giant testing marathon. Of course, if the first time you run all the tests needed
by the system is before deployment, you were in trouble long before you got out of bed. The
concept of continuous integration has been gaining favor as something that should be done to any
nominally nontrivial system as a way of checking the system every day. No, you did not read that
wrong. Every day. Multiple times a day.

And if you have inherited a system already in production with no supporting tests, remember that
you can add tests as bugs are reported. Rather than spend all your time dreaming up tests to
check the code, just write tests that prove a reported bug exists and that it has been fixed. If you
write a test every time a bug is reported, not only will the number of bugs be reduced, they will
not reappear.

Anyway, many books and articles are available to you to begin looking up information about
continuous integration and the tools that support it, such as CruiseControl. Appendix E,
“Recommended Resources,” lists just a few Web sites to begin your journey to more predictable
software.

08 6108 ch06 8/9/04 11:29 AM Page 140

In Brief
The Eclipse support for JUnit is quite extensive and convenient. The JUnit TestRunner is a
full-fledged SWT GUI and is well-integrated with the Java Development Tooling plug-in. As
an accepted standard, JUnit goes a long way in encouraging the use of tests in day-to-day
development and continuous integration. JUnit’s small API makes it easy to learn and easy
to use.

In this chapter you looked at the following JUnit capabilities:

n Implementing a JUnit test involves writing a Java class and selecting it before opening
the New dialog to select the JUnit Test Case. The results of JUnit tests are viewed
through the TestRunner GUI.

n The creation and execution of JUnit tests are supported from within Eclipse.

n The JDT debugger let’s you set breakpoints and debug JUnit tests.

n JUnit test suites can be created using the JUnit Wizard. You can re-create the test suite
through the wizard as well as modify the test suite by hand.

n There are many JUnit extension frameworks. Non-plug-in JUnit extensions, such as
Cactus, can be included in your projects in two ways: by inheriting from a base class
such as ServletTestCase or by instantiating objects of type ServletTestCase in your
JUnit test.

n Tomcat and Cactus can be downloaded from the Jakarta site for use by Eclipse in the
development of Web applications.

n Cactus programs to test servlets can be implemented and run from within Eclipse using
the built-in support for Tomcat and the JUnit launcher support.

141
In Brief

08 6108 ch06 8/9/04 11:29 AM Page 141

