
IN THIS CHAPTER

. Eclipse Support
for CVS 143

. Accessing CVS 149

. Merging a Branch 156

7Painless Code
Sharing Using Team
Support

It’s the source control, stupid.

—Anonymous

Eclipse Support for CVS
No matter what your views may be about the use of an
IDE versus a text editor, the one thing developers can agree
on is the use of source control. Once your source code has
found its way onto the filesystem, it is imperative that you
save it in some kind of repository when you feel it has
reached a level of functionality you can snapshot. Test-
driven development techniques allow you to feel confident
about the state of your code at any given milestone,
whereas the use of source control gives you the knowledge
that, if you had to, you can always roll back to an earlier
version. Don’t let test-driven development make you
cocky; always use source control.

The advantage of source control is that you can work on
your copy of the source for as long as you like, and when
you decide to check the code into the repository, CVS will
let you know that either your code is acceptable or
someone else changed the code since you checked it out
and now you need to resynchronize your code with the
repository. Let’s look at Eclipse support for CVS and how it
will assist you in importing code for you to work on as
well as exporting source code when you are finished.

Eclipse support for source control is at the same level of
support as Java development. The CVS perspective

09 6108 ch07 8/9/04 11:22 AM Page 143

CHAPTER 7 Painless Code Sharing Using Team Support
144

contains views of the available CVS repositories, including a repositories view, an editor view,
and resource history. Unfortunately, Eclipse does not support local CVS repositories. The only
way Eclipse can perform its source control tasks is through the use of a CVS server available
on some port on some machine.

CVS Perspective
The CVS perspective is displayed by either going to the main menu and selecting Window,
Open Perspective or by clicking the Open Perspective button in the shortcut bar at the top
right of the workbench. In either case, the CVS perspective appears as shown in Figure 7.1.
The first time you use the CVS perspective, it will not display any repositories. Eclipse waits
for you to enter a server and repository name so it can connect to the remote server and
display whatever CVS information the server is willing to supply. You can add or remove
repositories at any time, but be careful: Eclipse does not confirm the removal of a repository
from the CVS Repositories view unless you have imported code into a project. This does not
affect the actual repository in any way; it only removes it from the view.

FIGURE 7.1 The CVS perspective with no displayable CVS repositories.

Creating a New Repository Entry
Let’s look at the various views and how they support each other by connecting to a public
CVS repository on the Web.

09 6108 ch07 8/9/04 11:23 AM Page 144

To illustrate creating a new repository entry, let’s go to SourceForge and use Eclipse
to browse the CVS repository of a SourceForge project. You will start by going to
http://sourceforge.net and selecting one of the projects under the Most Active list in the
left navigation bar. At the time of this writing, JBoss was the fourth most active project on
the site. After selecting the JBoss.org project (http://sourceforge.net/projects/jboss/),
you should see the “Project: JBoss.org: Summary” page appear. Select the CVS link from the
headers list directly below the Summary bar. The CVS link leads you to the “Project:
JBoss.org: CVS” page, which briefly discusses CVS, anonymous CVS access, and developer
CVS access. The information you are looking for is located in the Anonymous CVS Access
section. When I accessed the CVS page for JBoss.org, the Anonymous CVS Access section
displayed the following CVS information:

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/jboss login

This line tells us three things:

n The CVS server name is cvs.sourceforge.net.

n The CVS root path to the project is /cvsroot/jboss.

n The CVS user login name is anonymous.

Something else the JBoss.org CVS page tells us is that user anonymous has no password. Using
this information, the next few steps will connect you to the SourceForge CVS server and
allow Eclipse to display the CVS repository for the JBoss.org project.

145
Eclipse Support for CVS

CVS, Firewalls, and Connectivity

If the CVS server you need to access is not located on your local machine, you need to be set
up to connect either across the Internet or on your local network. Connecting to SourceForge is
a trivial exercise that gives you a rich selection of code from which to choose. Remember,
however, that this will not work if you are situated behind a firewall or are not connected to the
Internet.

First, right-click in the CVS Repositories view and select New, Repository Location to display
the Add CVS Repository dialog (see Figure 7.2). Once you enter all the required information,
this dialog will take care of finding the machine on the network and displaying its repository
in the CVS Repositories view located on the left side of the workbench.

In the Add CVS Repository dialog, enter cvs.sourceforge.net into the Host field,
/cvsroot/jboss into the Repository Path field, and anonymous as the user. The Connection
Type field should be set to pserver; if it is not, change it to pserver. The CVS servers at
SourceForge use the standard CVS password server to authenticate any users coming into the
repositories, so you must set the connection type to pserver. Use Default Port should be the
selected radio button, and Validate Connection on Finish should be checked. Figure 7.2

09 6108 ch07 8/9/04 11:23 AM Page 145

shows all the information discussed here. Click
Finish. A Progress Information dialog should
briefly appear. When it closes, the CVS
Repositories view should display the JBoss.org
CVS source tree (see Figure 7.3).

A Brief Tour of the Various
Views
Let’s look at the various parts of the CVS
perspective using the JBoss CVS repository.

The default CVS perspective is made up of
three views:

CHAPTER 7 Painless Code Sharing Using Team Support
146

FIGURE 7.2 The Add CVS Repository dialog with
all the information necessary to connect to the
SourceForge CVS server.

n The view to the left is the CVS
Repositories view.

n Directly to the right of the CVS
Repositories view is an editor area.

n The area below the editor is the CVS
Resource History.

FIGURE 7.3 The CVS Repositories view with the JBoss.org CVS repository being displayed.

09 6108 ch07 8/9/04 11:23 AM Page 146

The CVS Repositories view is where CVS repositories are displayed in a tree view (see Figure
7.4). The CVS Repositories view can display zero-to-many CVS repositories. Double-clicking
the repository name, or clicking once on the plus sign, will open the view, revealing the
HEAD, Branches, and Version nodes.

147
Eclipse Support for CVS

FIGURE 7.4 The CVS perspective with its two views and one editor area.

The HEAD node is the main branch of the CVS tree for that repository. It represents the main
branch or trunk of the repository tree. Double-clicking HEAD, or clicking once on the plus
sign next to the HEAD branch, will display everything in the main branch of the repository,
which includes directories and files. Double-click HEAD to close the node.

Double-clicking the Branch node, or clicking once on the plus sign next to the Branch node,
will reveal that there are no branches currently available. What does this mean? Well, you
would create a branch in a CVS repository when you need a safe place to make changes that
will end up in the HEAD branch. If you were to decide to make changes to the JBoss.org
source (assuming you had developer privileges), you would create a branch where the files
you wanted to work on would be associated. After the file changes were complete, you would
check to see if the files had changed since you took them out. If they had changed, you
would have to reconcile the new changes with your current changes. If no changes were
made, you could safely check your files into HEAD.

CVS Repository view

Editor area

CVS Resource History view

09 6108 ch07 8/9/04 11:23 AM Page 147

Opening the Version node displays version tags associated with various directories and files
for a particular version. For example, selecting the version tag jbossmq and right-clicking it
will display the pop-up menu. Choosing Configure Branches and Versions causes a dialog to
appear that allows you to select branches and/or versions of a directory associated with a
particular branch or version (see Figure 7.5).

Let’s walk through an interesting JBoss directory and add it to the Branch node. Once that
directory has created a new branch, you will add the directory’s contents as a project within
Eclipse. Open the Version node in the CVS Repositories view, scroll down, and right-click
jbossmq. Select Configure Branches and Versions from the pop-up menu. When the dialog
appears, open the src folder by clicking the plus sign next to it and then open the main
folder by clicking the plus sign next to main. Open the org directory, followed by jboss and
then mq. Select the Connection.java file. The list box to the right now displays the various
branches and versions associated with that file. Click the Deselect All button and check the
Branch_2_4 and Branch_3_0 boxes. Click Add Checked Tags, and a plus sign will appear next
to the Branches node in the tree view in the center of the dialog. If you open that Branch
node, you will see that Branch_2_4 and Branch_3_0 have been added to it. The dialog and all
the preceding information is displayed in Figure 7.5. Click OK.

CHAPTER 7 Painless Code Sharing Using Team Support
148

FIGURE 7.5 The Configure Branches and Versions dialog for jbossmq displaying the two selected branches.

The Branch node in the CVS Repositories view now has a plus sign next to it. Open the
Branch node and you will see two branches associated with it: Branch_2_4 and Branch_3_0.
Open either branch and you will see that jbossmq has been added as a branch associated with
the JBoss.org repository. These branches have no connection with the public CVS repository
with which we started. However, if you right-click the jbossmq folder, you’ll see the pop-up
menu item Check Out As Project (the second item in the list). If you select Check Out As

09 6108 ch07 8/9/04 11:23 AM Page 148

Project, the CVS plug-in will extract all the code in the folder and create an Eclipse project
named jbossmq made up of the code from the particular branch of JBoss.org you selected,
which in this case is not the latest branch.

The Editor view is used to display a read-only view of a selected file. Because the file is not
associated with an Eclipse project, you are not allowed to change the file in any way. Select
Branches, Branch_2_4, jbossmq Branch_2_4, src, main, org, jboss, mq and then double-click
Connection.java. The file will appear in the editor view fully syntax-colored and with a
moveable cursor. Cutting and pasting from the editor into another destination is supported.

The final view is the CVS Resource History. This view displays the CVS revisions, tags, time-
stamps, author, and comments associated with a file. Right-clicking the Connection.java file
used earlier will display the selection Show in Resource History in the pop-up menu. Select
that item, and the current known CVS information for Connection.java will appear. Of
course, all the CVS information is displayed, not just the information up to the version you
selected.

The two text areas below the CVS Resource History table will display detail data for a chosen
row. Select one of the rows of CVS data from the CVS Resource History. The left window will
display version tags, if any are available, and the right window will display the full comment.

Accessing CVS
An interesting point to note is that the CVS perspective does not care if you are looking at a
repository of Java code or a repository of COBOL code. Source control is source control. CVS
is CVS. The JBoss.org repository consists of Java code, but the information we will be viewing
pertains to anything under the control of the repository.

Checking In
Now that you have seen how easy it is to connect to an external CVS server, create working
branches from versions within the CVS repository, and create projects from CVS folders, let’s
create a new project and make it available to the rest of our team. For the sake of argument,
assume that we have a project called Greeter with one package and one class, called
GreetingFactory, in the package. You will export GreetingFactory so others can use the
class.

If you do not have a CVS server to which you can safely connect and you are running on a
Windows machine, you can download and install CVSNT from http://www.cvsnt.org/.
You’ll find plenty of instructions and help at the CVSNT site to get you going. However, I ran
into problems the first time I configured CVSNT, so be sure to read Appendix B, “Setting Up
and Running a Local CVS Server,” which goes into some of the setup issues involved in
getting CVSNT up and running so that Eclipse can connect to it. Be aware that some of the
functionality may not work correctly due to incompatibilities between Eclipse and CVSNT.

149
Accessing CVS

09 6108 ch07 8/9/04 11:23 AM Page 149

Because you are creating this project for the first time, we will create a new repository loca-
tion and then commit the project files into it.

Select the CVS perspective using either the Perspective button or by selecting Window, Open
Perspective, CVS Repository Exploring from the main menu. Once the perspective is visible,
right-click in the CVS Repositories view and select New, Repository Location. When the Add
CVS Repository dialog appears, enter the name of the machine where you installed CVSNT,
the absolute path to the repository, and the username and password to allow you to log in to
the repository. Click Finish to complete the connection to your CVS server. If you have a
repository path problem, make sure you unchecked the Repository Prefix box in the CVS for
NT admin program.

Before you can check in the Greeter project, you need to create it. Go to the Java perspective,
create a project named Greeter and create a new class, GreetingFactory, in the package
example. The code for this class should look something like this:

package example;

public class GreetingFactory {

public String greetingsTo(String name) {

return “Hello, “ + name + “!”;

}

}

After saving the class, right-click the project name in the Package Explorer view. From the
pop-up menu, select Team, Share Project. The Share Project dialog will appear, asking you to
choose a repository type for the shared code to reside in. Select CVS and click Next. The next
panel in the dialog, the Share Project with CVS Repository panel, needs to know if the code
will be shared in an already existing CVS repository or if you are going to add a new reposi-
tory location. Part of the process of configuring CVSNT is the registration of CVS repositories.
If you did not create any repositories, go to Appendix B and read the section titled
“Registering a Repository.”

Once you have a repository registered, you can do one of two things: You can register the
repository location in the CVS perspective ahead of time and then, within the Share Project
dialog, select Use Existing Repository Location, or, again from the Share Project dialog, you
can select Create a New Repository Location.

If you select Create a New Repository Location, the panel you used to enter the repository
information (host, repository path, username, and password) is displayed. In addition, once
you’ve entered the repository information, the dialog’s Enter Module Name panel will request

CHAPTER 7 Painless Code Sharing Using Team Support
150

09 6108 ch07 8/9/04 11:23 AM Page 150

a module name under which the project will reside. It will try to best guess your intention by
using the existing project name as the module name, but you are also allowed to enter your
own module name. For this example, you should use the project name. At this point, clicking
Next or Finish accomplishes the same goal: connecting to a repository and starting the first
step in checking in the new project.

However, if you chose Use Existing Repository Location instead, clicking Next will take you
directly to the Enter Module Name panel, and you can either use the existing project name
or enter a new name after selecting Use Specified Module Name. Again, for this example, use
the existing project name for clarity.

Clicking Next or Finish will now set up an initial connection between your project and the
CVS repository. If you have not clicked Finish, do so now. In addition, the CVS plug-in will
compare your incoming code to code that may already be in the repository. In this case,
there is nothing to compare, so right-click the project folder in the Synchronize view and
select Commit from the pop-up menu. The Add to CVS Version Control dialog appears
asking if you want to add the files to CVS because the resources do not appear to be under its
control. Click Yes and enter a comment, such as “My first CVS commit.” And click OK Select
the CVS perspective and open the repository location you selected as the destination for your
code. Open the HEAD node and you will see a folder with your project name (unless you
chose to name your project something else, in which case the folder will have that name).
Open the project folder, also known as the module folder, and you will see the same directory
structure as your project. The only piece that appears to be missing is the JRE System Library
component of your project. In fact, in your actual project, the Package Explorer view
combines the JAR files listed in your classpath with your source code to give you a consoli-
dated view of your work. The JAR files are not actually located in your project directory.

The process works the same if you want to check in an arbitrary number of individual files,
with only one caveat: Before you check in your file, you should synchronize your changes
with the current contents of the branch you are committing to.

For example, someone else can update the very basic GreetingFactory you committed with
additional code while you have been working on it as well. This would imply the following
development steps when using CVS:

1. Check out, or create, a project.

2. Make changes.

3. Synchronize with the CVS repository.

4. Update any code that is in conflict.

5. Commit the files once any conflicts have been resolved.

151
Accessing CVS

09 6108 ch07 8/9/04 11:23 AM Page 151

Return to the Java perspective. Change the GreetingFactory code by adding a comment:

/**

* This is a comment.

*/

The code should now look like this:

package example;

/**

* This is a comment.

*/

public class GreetingFactory {

public String greetingsTo(String name) {

return “Hello, “ + name + “!”;

}

}

CHAPTER 7 Painless Code Sharing Using Team Support
152

S H O P TA L K
Practicing Safe Source Control

A search on various search engines for “source control best practices” does not yield much in the
way of direction for the use of source control in environments where continuous integration is the
watchword. In practice, if developers on a team can be convinced that source control is useful—
and there are many who pay lip service to it but in fact don’t use it or use it badly—then how
often it is used becomes the driving force in your process. If your team wants to test/integrate your
system every day, then enough code has to churn into the source control system to trigger the
checkout of the system so that it can be deployed and tested.

Consider the following when you extract code from source control to perform a bug fix or a
feature addition/extension:

n Make sure you also take out the test associated with the class you are about to modify. Add
whatever tests you need to confirm that your changes work.

n Although this might be too obvious, you should push only working code back into source
control. The code might still break when your scripts perform a full system test, but it should
have worked when it left your machine.

n If you are fixing a bug, push back all the files associated with the change, including the tests.

n Consider branching HEAD to make your changes rather than making the changes to HEAD.
Although this is a little extra trouble, it allows others the opportunity to work the main
source trunk if needed.

n If you are adding/completing functionality, push back all the files/tests for the working func-
tionality. Consider granularity at a use-case level until you find a finer or coarser granularity
that you and your team are comfortable with.

09 6108 ch07 8/9/04 11:23 AM Page 152

Save the file and notice the greater-than signs (>) that appear next to all the names in the
project hierarchy in the Package Explorer. The greater-than sign tells you that you have
checked out the changed file and, by implication, you are going to check it in at some later
point in time.

Before you check in the code, you have to synchronize your version of the file with whatever
happens to be out in the branch. You are still using the HEAD branch, so right-click the file
in the Package Explorer and go to Team, Synchronize with Repository. The Synchronize CVS
Workspace dialog opens, displaying the available resources that can be synchronized. Select
the Greeter project and click Finish. A confirmation dialog opens, asking for permission to
switch to the Team Synchronizing perspective. Click Yes to open the new perspective. When
the Team Synchronizing perspective opens, another dialog opens, reporting the results of the
synchronization. In this case, it found two outgoing changes, no incoming changes, and no
conflicting changes. Click OK to close the reporting dialog. To the left of the perspective is
the Synchronizize view. In this view, open Greeter, src/example, GreetingFactory.java.
Double-click GreetingFactory.java to open the Compare editor (see Figure 7.6).

153
Accessing CVS

FIGURE 7.6 The Team Synchronizing perspective displaying the Synchronize view and the Compare editor.

The Compare editor is showing you three different views of the file about to go into CVS.
The Java Structure Compare view, located at the top of the Compare editor, displays the class
structure and the differences between the current structure and the structure of the class
coming from the branch to be merged. Any selected elements will appear in Java Source
Compare. Any elements flagged in red are conflicts that must be resolved. Because there are
no structural changes, the window is empty.

09 6108 ch07 8/9/04 11:23 AM Page 153

The Java Source Compare view, the bottom half of the Compare editor, displays the work-
bench file to the left and the branch file to the right. All changes go from right to left. In this
example, this is not a problem, but if you had been trying to synchronize a branch, it might
be a problem (more on branches later). However, because the change in the workbench code is
going to overwrite whatever is in the HEAD branch, you can safely ignore the code differences.

The toolbar on the title bar of the Java Source Compare view can be used to copy conflicting
code from right to left for an incoming change, from left to right on an outgoing change, or
to display a direction-insensitive file compare. In this case, you don’t need to do anything to
update the file to contain the changes because they are in the file you are about to commit.
The fourth button from the left copies all nonconflicting changes from right to left, and the
sixth button copies the current change from the right file to the left file.

For this example, you want to take all the changes from your workbench code (the window
on the left) and commit them to the repository. Right-click the GreetingFactory.java file in
the Synchronize view and select Commit from the pop-up menu. When the Commit dialog
appears, enter the comment “My second commit.” Click OK. Return to the CVS perspective,
right-click in the CVS Repositories view and select Refresh View, and then open your local
repository location. Open HEAD, Greeter, src, example. The GreetingFactory.java file will
be version 1.2. Close all open editors.

Checking Out
In order to proceed through the steps of checking out an existing project, you will now delete
your project from the Java perspective and check out as a project the code you committed
into the repository. You will then modify your file, check it back in as an individual file, and
view the file in CVS to ensure that the check-in was successful.

CHAPTER 7 Painless Code Sharing Using Team Support
154

Keyboard Shortcuts Considered Useful

Remember that Ctrl+F8 will take you to the next open perspective on your workbench. Pressing
Ctrl+F8 will toggle you between your current perspective and your last perspective.

Return to the Java perspective. Select project Greeter and delete the project, either by pressing
the Delete key or by right-clicking the project name and selecting Delete from the pop-up
menu. When the Confirm Delete Project dialog appears, select Also Delete Contents Under
[your project path here]? and click Yes. Your code is now gone from the local filesystem.

Return to the CVS perspective. Right-click the Greeter folder located under HEAD and select
Check Out As Project from the pop-up menu. Because the project does not exist in the work-
space, the checkout proceeds without any more prompting from the system. Had the project
already existed and you chose Check Out As Project, the CVS plug-in would have prompted
you for permission to delete the destination project so that the code checkout could proceed.
If you go back to the Java perspective (press Ctrl+F8), you will find the Greeter project is back
safe and sound.

09 6108 ch07 8/9/04 11:23 AM Page 154

Also notice that the project name has a greater-than sign (>) as its prefix. This means that the
project was taken out of source control.

Now that you have successfully checked in and checked out your project, bear in mind that
all the work you have accomplished so far has been to the HEAD branch of your repository.
At some point you will need to make changes to your code that you can commit without
affecting HEAD. This is where branching comes in.

Branching
In the Java perspective, right-click the Greeter project and select Team, Branch. Enter the
branch name Greeter_1_0, leave the check box Start Working in the Branch checked, and
press Enter or click the OK button. The string “Greeter_1_0” and the name of your CVS server
appearing within square brackets should now follow your project name. Return to the CVS
perspective. Anywhere within the CVS Repositories view, right-click and select Refresh View
from the pop-up menu, or press F5. A plus sign will appear next to the Branches node. Open
the Branches node and you will find a branch called Greeter_1_0. If you open branch
Greeter_1_0, you will find a folder named after your project with the branch name displayed
next to it.

155
Accessing CVS

The Use Of Branch Naming Conventions

Not to belabor the obvious, but branch naming conventions are important. At the very least,
enter a branch name that will not conflict with any other branch name in your repository.

Branch Greeter_1_0 is where your code will go when you update it and commit it to the
repository. Return to the Java perspective. Add the following code to GreetingFactory:

private String _greeting = “Hello, “;

/**

* @param string

*/

public void setGreeting(String string) {

_greeting = string;

}

You should insert the code above greetingsTo(). Save the code, right-click the filename in
the Package Explorer, and select Team, Commit from the pop-up menu. When the Commit
dialog appears, enter the comment “Added setGreeting().” Click OK.

Press Ctrl+F8 to return to the CVS perspective. Refresh the view by pressing F5. Open Branch,
Greeter_1_0, Greeter Greeter_1_0, src, example. The version number for
GreetingFactory.java is different (higher) from the version number of
GreetingFactory.java under HEAD.

09 6108 ch07 8/9/04 11:23 AM Page 155

Merging a Branch
Your next task is to take the code change you made to GreetingFactory and move it into
HEAD. In order to accomplish the move to HEAD, you are going to overwrite the code in the
workbench and merge it with the code for your custom branch. This is a safe procedure
because the updated code is, in fact, in branch Greeter_1_0.

Return to the Java perspective. Right-click the project name in the Project Explorer view and
go to the Replace With, Another Branch or Version item. When the Select with Branch or
Version dialog appears, select HEAD and click OK. The CVS plug-in has now overwritten the
changes you made, but the changes are still in Greeter_1_0. Now that the workbench reflects
the code from HEAD, you will update the workbench code with the changes from the
branch.

Right-click GreetingFactory.java and select Team, Merge from the pop-up menu. Select as
the starting point Root_Greeter_1_0 and click Next. In the next panel, open the Branches
node, select Greeter_1_0, and click Finish. The Confirm Perspective Switch dialog opens,
asking to switch to the Team Synchronizing perspective. Click Yes. In the Editor view of the
Team Synchronizing perspective, the Compare editor will be open with information
displayed in all three Compare editor windows (see Figure 7.7). The Java Structure Compare
window, the one at the top of the Compare editor, allows you to compare the file in the
branch with the source in the workbench, which matches the source in HEAD. To make it
easier to compare the files, double-click the title bar of the Compare editor to fill the screen.

CHAPTER 7 Painless Code Sharing Using Team Support
156

FIGURE 7.7 The Team Synchronizing perspective’s Compare editor with the HEAD and branch versions of
GreetingFactory.java.

09 6108 ch07 8/9/04 11:23 AM Page 156

The Java Structure Compare window shows you the differences in the structure of your class
definition. In this case, the blue arrows with the embedded plus signs mean that the branch
has changes that need to be incorporated into the workbench code. Once again, the Java
Source Compare window is directly below the Structure Compare window. The left window is
the workbench code, and the right window is the branch code, which contains the changes
you made. In this case, the HEAD code is to the left and the branch code is to the right.
However, bear in mind that the changeable code is always going to be in the left window. It
is because of this that you overwrite the workbench code with the target branch that does
not contain your changes, and you compare it to the branch that contains the actual
changes. The color code used by the two windows is as follows:

n Incoming changes are blue.

n Outgoing changes are gray.

Simply update the workbench files with the changes committed to the branch. Click the
sixth button, Copy Current Change from Right to Left, to update the workbench file with
your changes. If more changes were available, you would continue adding changes to the
workbench file until no more changes were available. Save the file and shrink the editor
window back to normal by double-clicking the title tab.

The final step in updating the HEAD branch is the actual commit to the repository. This is no
different from what you did earlier when you checked in the project. However, in this
example you are only going to enter one file. Right-click GreetingFactory.java and select
Commit. Enter a comment into the Commit dialog and click OK. Return to the CVS perspec-
tive and press F5 to refresh the CVS server view. Note that GreetingFactory has had its
version number updated.

In Brief
The CVS perspective is a quick-and-easy way to connect to a CVS server. The sharing of files
is a trivial task, and support for combining out-of-sync files is intuitive.

You were able to accomplish a number of CVS-related tasks:

n The creation of a new repository entry is handled by using the Add CVS Repository
Wizard.

n The CVS Repositories view lists the various CVS servers with whose repositories you can
interact. The editor area will use an appropriate editor to display a file, but the file is
read-only. The CVS Resource History allows you to see the CVS audit trail of any given
file.

n The check-in process involves synchronizing with the repository to ensure that no one
else has changed the file since you took it out and, after you correct any changes,
committing the file into the repository after you enter a descriptive comment about
any changes made.

157
In Brief

09 6108 ch07 8/9/04 11:23 AM Page 157

n The check-out process involves finding a module of folder in the CVS repository and
selecting Check Out As a Project.

n Branches are created by selecting a project or a file and choosing Team, Branch from
the Java perspective Package Explorer view.

n File merges are accomplished by committing your current changes to the non-HEAD
branch, checking out the HEAD branch, and selecting the branch and HEAD as the
merge source and target, respectively. After reconciling all file differences, you can
safely commit your files to HEAD.

CHAPTER 7 Painless Code Sharing Using Team Support
158

09 6108 ch07 8/9/04 11:23 AM Page 158

