
IN THIS CHAPTER

. J2EE, Struts, and
Eclipse 243

. Implementing a Web
Application Using a Struts
Module 245

11Struts Development
Using MyEclipse

“A framework is the final reinvention of a wheel.”

—Anonymous

J2EE, Struts, and Eclipse
Chapter 9, “J2EE and the MyEclipse Plug-In,” discussed
many of the wizards and editors available within the
MyEclipse plug-in, which is itself an aggregation of plug-
ins to make J2EE development more convenient.

J2EE is a collection of distinct technologies. Some of the
technologies have a direct application with system integra-
tion (CORBA, RMI), data connectivity (JCA), security
(JAAS), XML (JAXP), and email (JavaMail), just to name a
few. However, of all the technologies associated with J2EE
servlets, JavaServer Pages and Enterprise JavaBeans appear
to be the most popular. Due to the popularity of Web
applications, servlets and JSPs have been used in many
applications. This accumulation of experience has led to a
recognition of the commonality of designs used for the
presentation layer—which leads us to Struts.

Struts
Struts is not an official part of the J2EE architecture, but it
rests on J2EE technologies—in particular, servlets and
JSPs—to accomplish its goals. It codifies standard Web
development practices and, once you understand how the
pieces fit and why they fit the way they do, makes devel-
opment of the presentation side of a Web application

14 6108 ch11 8/9/04 11:33 AM Page 243

CHAPTER 11 Struts Development Using MyEclipse
244

simple. Struts is an open-source framework that defines a presentation architecture based on
the Model-View-Controller design. The View component of the framework can be JSPs,
Velocity, and/or XSLT, to name a few. The Controller component is a Struts-provided servlet
that keeps a list of the objects you define, which drives the custom logic of your Web applica-
tion. The Model component is your back-end system. It could be a custom datasource or a
standard Java technology such as JDBC. Struts doesn’t worry much about the model because
that is the part of any system that is the most difficult to standardize.

Struts, as one of the more popular Web application frameworks, has the following moving
parts:

n The Action class is the parent of a custom class that is responsible for handling incom-
ing requests from the Web. This class is fine-grained in that it should handle one
request. You are responsible for defining this class.

n An ActionForm is the parent of a custom class that maps directly to a form on some
HTML page. The ActionForm could also be a superset of the fields, in case you have a
form that spans multiple pages. You are responsible for defining this class.

n Zero or more HTML pages that send requests and zero or more JSPs (or other Action
objects) that send responses back to the client. You are responsible for defining these
pages and/or Action objects.

n The ActionServlet is the main switching point for the Struts framework. This is the
only servlet needed for a Web application. The ActionServlet is responsible for receiv-
ing requests from the Web, determining which Action is responsible for a particular
request, and routing the request to it. The configuration of the ActionServlet is
defined in the Web application’s web.xml file.

n The struts-config.xml file defines the configuration of a Struts-based application. It
ties together the various pieces implemented by a developer. The ActionServlet uses
this file to determine to which Action it should route incoming requests and with
which ActionForm objects.

Also, support for dynamic forms (DynaActionForm), reusable presentation components
(Tiles), and an external validator framework (the Validator framework) extends the capabili-
ties of Struts even further.

For those of you already using frameworks such as Struts or WebWorks, you know using a
proven design to implement your applications provides tremendous time savings. Many IDEs
support Struts, and MyEclipse brings Struts support to Eclipse through the integration and
extension of the Easy Struts plug-in, which was one of the early Eclipse plug-ins to support
Struts.

Before installing MyEclipse, make sure you uninstall any existing Struts plug-ins. There may
be conflicting configuration issues that are best avoided by using one plug-in task type at a
time.

14 6108 ch11 8/9/04 11:33 AM Page 244

Finding and Installing MyEclipse and Tomcat
The “Downloading and Installing MyEclipse” section of Chapter 9 discusses the whys and
wherefores of MyEclipse and walks you through the process of downloading and installing
the plug-in, as well as downloading and installing Tomcat. If you have not installed either
MyEclipse or Tomcat and need some help, refer to that section.

To use Tomcat within MyEclipse, you need to make sure MyEclipse is configured to support
your version of Tomcat. If you have not yet configured MyEclipse to support Tomcat, again,
refer to “Downloading and Installing MyEclipse” in Chapter 9 for the MyEclipse configura-
tion information Tomcat needs to supply.

You are now ready to begin using MyEclipse to develop Struts applications.

Implementing a Web Application Using a Struts
Module

Let’s create a Web application to allow for the lookup of course information from a training
company. An input page will ask for a course number, a course name, and an instructor
name. If bad information is entered, the input page will let the user know which fields have a
problem. If a course is found, the application will display information about it; otherwise, a
“No course found” message will be displayed. You will put the main pieces together using the
MyEclipse Struts wizards as well as the MyEclipse JSP editor.

The steps for creating a Struts application within MyEclipse are as follows:

1. Create a J2EE Web Module project.

2. Flag the Web Module project as Struts enabled.

3. Create the following three items in no particular order based on appropriateness:

n Create an ActionForm that maps to the form in your starting HTML page. This
step may be optional if the page you are coming from does not have a form.

n Create an Action. If the Action processes an incoming form, use the ActionForm
passed in as a method parameter.

n Create a JSP that the Action can forward to, if necessary. An Action can execute
and output HTML just like any other servlet, only it is not a servlet.

4. Update the struts-config.xml file to tie together the ActionForm, the Action, and the
JSP (or any other target to which the Action might forward the request).

5. Deploy the Struts-based application to a Web server.

245
Implementing a Web Application Using a Struts Module

14 6108 ch11 8/9/04 11:33 AM Page 245

It is possible to create a Struts-based application with a JSP that gets routed back to itself, but
it is not the intention of this chapter to go over Struts tips and tricks. Plenty of great Struts
books are available that cover that kind of information. A few are listed in Appendix E,
“Recommended Resources.”

You start the process by creating a Web Module
project and add Struts capabilities to it. Press
Ctrl+N to open the New dialog; select Web
Module Project beneath J2EE and click Next.
Enter the project name CourseCatalogStruts (see
Figure 11.1) and click Finish. If the Confirm
Perspective Switch dialog opens asking for
permission to switch to the MyEclipse perspec-
tive, click Yes. The project is once again set up
the way a Web application should be: Under
WebRoot you have a WEB-INF directory, a lib
subdirectory, and a web.xml file to hold the
configuration information needed by the Web
server to properly deploy the application. There
is also a META-INF directory, but it is really there
for the use of the archiver, when you create and
extract a WAR file.

The creation of a Web project is not sufficient to
flag this project as a Struts-based project. Right-

click the project and go to MyEclipse, Add Struts Capabilities. The New dialog opens on the
Struts Support for MyEclipse Web Project page (see Figure 11.2). This page defines the infor-
mation that will be inserted into web.xml. Struts Config Path is set to /WEB-INF/struts-
config.xml. This path defines where the ActionServlet can find the Struts application
configuration file. You can set this path to almost anywhere as long as a file exists at that
location. In most circumstances, you will leave this value set to its default.

Leave the ActionServlet Name field set to action. Change the Base Package for New Classes
field to eclipse.kickstart.struts and click Finish.

The Struts Wizard took care of the following tasks:

n The required Struts JAR files have been copied to WEB-INF/lib.

n The optional Tag Library Descriptor (TLD) files have been copied to WEB-INF. These files
support the use of Struts custom JSP tags. In the development of a real application, you
should create another directory under WEB-INF (for example, tld) where the TLD files
should be moved. Web applications have a habit of aggregating support files, so the
longer you can stay organized, the better. For this example, leave the files where the
wizard placed them.

CHAPTER 11 Struts Development Using MyEclipse
246

FIGURE 11.1 The New J2EE Web Project page,
where you define the project name and the URL
target for the project.

14 6108 ch11 8/9/04 11:33 AM Page 246

n The struts-config.xml file has been created with empty elements for the available tags
that can contain information for use by the ActionServlet. The only missing tag is
plug-in, but the MyEclipse Struts Editor will perform Code Assist if you type <p in the
editor source page.

n The web.xml file, shown in Listing 11.1, has been updated with the servlet informa-
tion needed by the Web server to load the ActionServlet when the Web server starts,
and with default init-params for the ActionServlet to initialize itself. Also, a servlet-
mapping is defined to route incoming resource requests that match the *.do pattern.

247
Implementing a Web Application Using a Struts Module

FIGURE 11.2 The New dialog’s page for adding Struts support to an existing Web Module.

LISTING 11.1 web.xml

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE web-app PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”

➥”http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>

<servlet>

<servlet-name>action</servlet-name>

<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

<init-param>

<param-name>config</param-name>

<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>

<init-param>

<param-name>debug</param-name>

<param-value>3</param-value>

14 6108 ch11 8/9/04 11:33 AM Page 247

</init-param>

<init-param>

<param-name>detail</param-name>

<param-value>3</param-value>

</init-param>

<load-on-startup>0</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>action</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

</web-app>

Now that the Struts project is created and properly initialized to support your development,
you need to create an HTML page to accept input from the user, an Action class to manipu-
late the input and forward it to an output page, and an output HTML page to accept the data
created by the Action class. Once again, MyEclipse comes to your aid with wizards to take
care of creating stubbed versions of the files you need.

To open the Struts Wizard from the Package Explorer, open
CourseCatalogStruts, WebRoot, WEB-INF and then double-click struts-
config.xml. When the Struts editor opens, the Outline View displays a tree
view of the contents of the file (see Figure 11.3). The Outline view is very
important in the updating of the struts-config.xml file. Right-click
action-mappings (the Struts element that ties together an input page, an
action, and an output page) and select New Form, Action and JSP. This
opens the New dialog at the Struts Form page (see Figure 11.4).

As a presentation-level piece, it is best to think of the functionality you are
about to put together as satisfying a Use Case requirement for a larger appli-
cation. For example, a user would navigate to the course search page to get
information about a particular course, using a course number or description,
or an instructor’s name to discover which course he or she teaches. The
input page, using a form, would take the user input and send it to a Struts
Action, which would take care of retrieving course information. The Struts
Form page collects the information needed by the code generator to create
an initial input page and a Form class to contain the input data. The Struts
Wizard uses the convention that every Action should have the granularity

CHAPTER 11 Struts Development Using MyEclipse
248

LISTING 11.1 Continued

FIGURE 11.3
The struts-
config.xml Outline
view.

14 6108 ch11 8/9/04 11:33 AM Page 248

of a Use Case and therefore tries to name the
Form and the Action after the Use Case. Because
this is the Course Search Use Case, enter in the
Use Case field Course Search. The Form Name
field is automatically set to courseSearchForm,
and the Form Type field is set to eclipse.kick-
start.struts.form.

CourseSearchForm. Using the drop-down button,
change the Superclass setting from <default> to
org.apache.struts.action.ActionForm.

At this point, the Form class is empty. To add
form fields, click Add (found in the Form
Properties section next to the empty text area).
The dialog that appears allows you to set the
name of the form field, the Java type to which it
maps, an optional initial value, and the JSP
input type (see Figure 11.5). One at a time, enter
into the Name field courseNumber, courseName,
and instructor, leaving Type set to
java.lang.String, Initial Value set to blank, and
the JSP Input Type set to text. Click Add until
you have entered all three field names. When
the dialog reopens for the fourth time, click
Close. The Form Properties window lists
courseNumber, courseName, and instructor as
the defined form properties. Select the Methods
tab and leave the top two selected methods,
validate() and reset(), checked. Next, select
the JSP tab and change the path from
/form/courseSearch.jsp to /courseSearch.jsp.
Click Next.

The next page of the wizard, Struts Action
Declaration (see Figure 11.6), defines the

action-mapping and action elements found in struts-config.xml. The entry in the Path
field is the path alias used by the input HTML page to call the custom Action. In the HTML
file, the path needs to end with .do if the Struts HTML tag library is not used. If the Struts
HTML tag library is used, the Struts custom form tag will take care of adding .do to the form
submission target. When you are done with the wizard (do not click Finish yet), you will find

249
Implementing a Web Application Using a Struts Module

FIGURE 11.4 The Struts Form Wizard,
complete with valid entries. (Due to resolution
issues, the string Optional Details is covered by the
Form Properties tab.)

FIGURE 11.5 The Struts Create Property dialog
with the courseNumber entry.

14 6108 ch11 8/9/04 11:33 AM Page 249

that the input JSP has a call to /courseSearch as
the form action. Returning to the dialog, the
Type field has been filled automatically with an
acceptable Struts Action name based on the Use
Case from the previous page, and the attribute
name is filled in as well, using the form type
name. The Scope dictates the scope object where
the form will be placed when it is created by the
Struts framework. The Scope defaults to request.
This scope is acceptable because the search
information is only valid for the initial search
request.

Part of the responsibility of struts-config.xml
is to map the input form page to which the
ActionServlet should return if validation of the
form fails. To match what was done in the previ-
ous dialog page, change the Input Source field
on the Form tab from /form/courseSearch.jsp
to just /courseSearch.jsp for user convenience.
Leave the Parameter tab’s Parameter field empty
and make sure that the Methods tab has the
execute() checked that takes in an
HttpServletRequest/HttpServletResponse
object (the first choice). The last tab you need to
worry about, the Forwards tab, involves the JSP
page to which the Action object should forward
the response when it completes its task. The
forward you define is specific to this Action; it is
not a global forward. Click Add to open a dialog
to enter a name for the forward target and the
actual resource that should be called when the
target name is used. In this case, enter the
forward name success and the forward path
/results.jsp (make sure it has a leading slash).
Click Add to add the forward entry and then
click Close to return to the New dialog (see
Figure 11.7). Unfortunately, the wizard will not
create a stubbed-out version of this file.

Close the New dialog by clicking Finish. The
struts-config.xml file has two new entries:
form-beans and action-mapping. The relevant
code is shaded:

CHAPTER 11 Struts Development Using MyEclipse
250

FIGURE 11.6 The Struts Action page displaying
the ActionMapping information.

FIGURE 11.7 The Struts Action page with the
“success” forward target set.

14 6108 ch11 8/9/04 11:33 AM Page 250

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE struts-config PUBLIC

➥”-//Apache Software Foundation//DTD Struts Configuration 1.1//EN”

➥”http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd”>

<struts-config>

<data-sources />

<form-beans >

<form-bean name=”courseSearchForm”

➥type=”eclipse.kickstart.struts.form.CourseSearchForm”>

<form-property name=”instructor” type=”java.lang.String” />

<form-property name=”courseName” type=”java.lang.String” />

<form-property name=”courseNumber” type=”java.lang.String” />

</form-bean>

</form-beans>

<global-exceptions />

<global-forwards />

<action-mappings >

<action

attribute=”courseSearchForm”

input=”/courseSearch.jsp”

name=”courseSearchForm”

path=”/courseSearch”

type=”eclipse.kickstart.struts.action.CourseSearchAction”

unknown=”false”

validate=”true”>

<forward

name=”success”

path=”/results.jsp”

redirect=”false”

contextRelative=”false” />

</action>

</action-mappings>

<controller

bufferSize=”4096”

debug=”0”

locale=”false”

nocache=”false”

inputForward=”false” />

<message-resources parameter=”eclipse.kickstart.struts.ApplicationResources” />

</struts-config>

251
Implementing a Web Application Using a Struts Module

14 6108 ch11 8/9/04 11:33 AM Page 251

The struts-config.xml file has been modified, so save the file. Looking at the Outline view
shows that the form-beans and action-mappings nodes have entries in them. For a more
visual view of what you have just accomplished, click the Flow View tab located toward the
bottom of the Struts editor window (see Figure 11.8). It displays the action as a flow from the
starting input file (/courseSearch.jsp) to the Action object (/courseSearch.do) to the
output target (/results.jsp).

CHAPTER 11 Struts Development Using MyEclipse
252

FIGURE 11.8 The Flow View displays the input, action, and output of the Struts components.

Implementing CourseSearchAction
From the Flow View, open CourseSearchAction by double-clicking /courseSearch.do. A
cursory examination of the code shows that XDoclet has been hard at work generating the
Struts files defined through the wizard. A look at the Javadoc for the class shows two XDoclet
tags—@struts:action and @struts:action-forward (formatted to fit the page):

/**

* MyEclipse Struts

* Creation date: 06-07-2004

*

* XDoclet definition:

* @struts:action path=”/courseSearch” name=”courseSearchForm”

* input=”/courseSearch.jsp” validate=”true”

* @struts:action-forward name=”/results.jsp” path=”/results.jsp”

*/

14 6108 ch11 8/9/04 11:33 AM Page 252

The execute() method of CourseSearchAction has two lines of code: a line that assigns the
generic Form object to a variable of type CourseSearchForm, and another line that throws an
exception when the Action is called. Let’s remove the exception and instead return the
ActionForward that refers to your “success” target. The comments have been removed from
the following code for brevity:

public class CourseSearchAction extends Action {

public ActionForward execute(

ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response) {

CourseSearchForm courseSearchForm = (CourseSearchForm) form;

return mapping.findForward(“success”);

}

}

By the time this code is executed, Struts has taken care of filling and validating the form
object and, after the code calls the search object, forwarding the request to results.jsp
through the use of the alias success. The use of a forward name as an indirection to the
forward target makes your implementation much more flexible. If you need to change your
forward target, you just need to change the configuration file, not the code.

You have two things left to do to complete the example and run it within Tomcat: update the
CourseSearchForm and create a basic output page. Let’s start by updating the
CourseSearchForm to make the validate() and reset() methods relevant. The XDoclet-
created code throws an UnsupportedOperationException when validate() is called, but the
logic should be a little more reasonable:

public ActionErrors validate(

ActionMapping mapping,

HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

if (instructor.trim().length() == 0) {

errors.add(“instructor”, new ActionError(“instructor.error”));

}

if (courseNumber.trim().length() == 0) {

errors.add(“courseNumber”, new ActionError(“courseNumber.error”));

}

253
Implementing a Web Application Using a Struts Module

14 6108 ch11 8/9/04 11:33 AM Page 253

if (courseName.trim().length() == 0) {

errors.add(“courseName”, new ActionMessage(“name.error”));

}

return errors;

}

Make reset() assign an empty string to the various fields:

public void reset(ActionMapping mapping, HttpServletRequest request) {

courseNumber = “”;

courseName = “”;

instructor = “”;

}

Press Ctrl+Shift+O to remove compile problems related to missing imports.

The validate() method is now well-behaved. It creates an ActionMessage object each time
there is a validation problem, and the ActionServlet is free to return the ActionErrors
object to courseSearch.jsp. Of course, each of the ActionMessage objects is referencing a key
in the ApplicationResources.properties file, which you have not updated.
ApplicationResources.properties is found in the eclipse.kickstart.struts package. The
strings referenced in each of the ActionMessage constructors constitute the keys:

Resources for parameter ‘eclipse.kickstart.struts.ApplicationResources’

Project P/CourseCatalogStruts

instructor.error=Instructor name cannot be blank.

courseNumber.error=Course number cannot be blank.

name.error=Course name cannot be blank.

The input page, courseSearch.jsp, is already instrumented to handle an incoming
ActionErrors object. Open courseSearch.jsp in the JSP editor. Each of the individual
<html:text> lines has an associated <html:error>.

Let’s create the output file results.jsp. In the Package Explorer view, select WebRoot in the
CourseCatalogStruts project. Press Ctrl+N to open the New dialog and then select J2EE, Web,
JSP. Click Next.

The JSP Wizard page only needs three pieces of information: the location to where the JSP
should be written (File Path), the name of the JSP (File Name), and the template file to be
used to create a starting file (Template to Use):

n File Path—/CourseCatalogStruts/WebRoot

n File Name—results.jsp

n Template to Use—Standard JSP Using Struts 1.1

CHAPTER 11 Struts Development Using MyEclipse
254

14 6108 ch11 8/9/04 11:33 AM Page 254

After you’ve provided this information, click Finish.

The new JSP, results.jsp, is filled with setup information. Look for the line

This a struts page.

In place of this line, substitute the following:

Course Number: <bean:write name=”courseSearchForm” property=”courseNumber”/>

Course Name: <bean:write name=”courseSearchForm” property=”courseName”/>

Instructor: <bean:write name=”courseSearchForm” property=”instructor”/>

Now you can save results.jsp.

Before you deploy, check the form target in courseSearch.jsp. The version of MyEclipse used
in this chapter did not fill in the form action with the Struts action declared in the Struts
Wizard. The form action in courseSearch.jsp should read /courseSearch. If it does not,
update it to do so.

If you still have Tomcat running from the previous example, stop it by selecting the running
guy with the smiling face behind him. Click the downward-pointing triangle and click
Tomcat 5, Stop.

From the Package Explorer, right-click the
CourseCatalogStruts project and then click
MyEclipse, Add and Remove Project Deployment
to open the Project Deployments dialog. The
Project Deployments dialog displays available
projects and their deployment profiles. Select
CourseCatalogStruts in the Project field if it is not
the current project (see Figure 11.9). No deploy-
ment profiles are available for it, so you will have
to create one the same way you created one for
CallCenterWeb: by clicking Add and, when the
New Deployment dialog opens, selecting Server
Tomcat 5 and the deploy type Exploded Archive.
The Deploy Location field will display the direc-
tory where the Web app will be installed (see
Figure 11.10). Click Finish. Adding the
Deployment profile for the first time takes care of

doing the initial deployment. Click OK to complete the deployment and close the Project
Deployments dialog.

Restart Tomcat by selecting Tomcat 5, Start from the toolbar. You are ready to go when
Tomcat displays the following message:

INFO: Server startup in 18667 ms

255
Implementing a Web Application Using a Struts Module

FIGURE 11.9 The Project Deployments
dialog with no available deployment configura-
tions.

14 6108 ch11 8/9/04 11:33 AM Page 255

Open a Web browser and point it to your Struts
application:

http://localhost:8080/CourseCatalogStruts/

courseSearch.jsp

The HTML page displays a very plain look and feel,
with just the three fields and two buttons. Without
entering any information in the fields, click Submit.
The validate() method will create ActionMessage
objects for each of the fields, and the ActionServlet
will call courseSearch.jsp to handle displaying the
error messages contained in the ActionErrors object
(see Figure 11.11). The CourseSearchAction has not
been called as of yet.

Enter information in the various fields and click
Submit. The results.jsp page displays the entered
information (see Figure 11.12). Success! Your first
Struts Web application using MyEclipse is done.

CHAPTER 11 Struts Development Using MyEclipse
256

FIGURE 11.10 The completed deploy-
ment configuration for Tomcat 5.

S H O P TA L K
Struts and the Art of Layers and Indirection

The exercise you just ran through brings to mind a number of issues involved in the use of frame-
works and indirection.

First of all, it is important to remember that a framework encapsulates many best practices, but it
cannot encapsulate them all. Struts is no different and makes it a point to remind developers that
they are responsible for the “M” part of the MVC design used in Struts. The model is the core of the
application and needs the most work. The Struts example uses a form object to store the information
from the input page, but it does not pass the form to any kind of search service, for the sake of
brevity. However, even if there were a datasource of some kind, the Action should not pass the form
in anyway. Passing the form would increase the coupling between the presentation and the data
source layers. It would be up to the designer/implementer of the search service to create an object, or
objects, to hold lookup criteria to increase the cohesion but decrease the coupling. Not knowing how
a client is going to use the service would encourage the service to use this SearchCriteria object to
do its job generically. It is the difference between having an Action do this:

// Cast the incoming form

SearchForm strutsSearchFromObject = (SearchForm)form;

// Get the search service to look up a course

searchService = … // Retrieve the SearchService from somewhere…

Course [] course = searchService.searchFor(strutsSearchFormObject);

14 6108 ch11 8/9/04 11:33 AM Page 256

FIGURE 11.11 The course search page displaying error messages next to each field.

Struts is interesting enough that quite a bit of what you may have just discovered has less to
do with Eclipse and more to do with Struts. The MyEclipse Wizards copied all the files you
needed, created an input file, the ActionForm, the Action, and the ApplicationResource file.
The MyEclipse JSP Wizard also has built-in templates to create JSP files that directly support
the Struts tag libraries and Struts forms.

257
Implementing a Web Application Using a Struts Module

or this:

// Cast the incoming form

SearchForm strutsSearchFormObject = (SearchForm)form;

// Get the search service to look up a course

searchService = … // Retrieve the SearchService from somewhere…

// Copy the form information into a search service-specific object.

strutsSearchFormObject.copyTo(searchServiceCriteriaobject);

Course [] course = searchService.searchFor(searchServiceCriteriaobject);

By including the CourseSearchForm in the API of the CourseSearchService implies that the
service is only being used by the Action and no one else, which is always a possibility, but not
likely.

Does this mean that you would have to have code in various places in your Action to copy the
data from the form to the criteria object? Not at all. Because the object controlling the data is the
form, you would implement a copyTo() method in the form that would recognize the criteria
object and take care of copying any data into it.

14 6108 ch11 8/9/04 11:33 AM Page 257

FIGURE 11.12 The output from results.jsp.

For the next few additions to the current example, you should stop Tomcat and close all your
editor windows by pressing Ctrl+Shift+F4. The additions have to do with scenarios such as
the following:

n All Action objects need to call a particular forward if certain information is entered.

n When an exception is thrown from any Action, the Web application should always
display the same error page based on exception type.

n You will remove the code-based form altogether and use a configuration-driven form
instead.

n You will configure a JDBC source for use by the Struts application.

MyEclipse gives you direct Struts support for these scenarios, in the creation of global
forwards, global exceptions, DynaActionForms, and datasources. You will add one of each of
these to the CourseCatalogStruts project, and you will modify the CourseSearchAction to use
them all.

Adding Global Forwards
Let’s create a global forward that the CourseSearchAction will use when an unknown course
number is entered. A global forward is the mapping of a named resource that is available to all
action-mapping elements. To create a global forward using MyEclipse, open struts-
config.xml, go to the Outline view, right-click the global-forward node, and select New
Forward to open the Struts 1.1 Forward Declaration dialog. You can declare global and local
forwards using this dialog. By clicking a particular forward scope, you cause the wizard to
assign the forward information either to a particular Action or to a global-forward element.
For this example, ensure that Global Forward is the selected radio button in Forward Scope.
Enter the forward name unknown and enter the forward path /unknown.jsp (see Figure 11.13).
Click Finish. The struts-config.xml file is not saved by the wizard on completion, so save
the file by pressing Ctrl+S. The global-forward element generated by the wizard displays the
following information:

CHAPTER 11 Struts Development Using MyEclipse
258

14 6108 ch11 8/9/04 11:33 AM Page 258

<global-forwards >

<forward

name=”unknown”

path=”/unknown.jsp”

redirect=”false”

contextRelative=”false” />

</global-forwards>

259
Implementing a Web Application Using a Struts Module

FIGURE 11.13 The New Forward dialog with a complete name and path.

Add a conditional to the Action so that all course numbers but one will cause the
unknown.jsp page to be displayed (you will create unknown.jsp next). Open
CourseSearchAction, located in the eclipse.kickstart.struts.action package, in the Java
editor. Update execute() to check for course number TT490. If the right course number
comes in, results.jsp is called and all other course numbers get unknown.jsp. Change
execute() to check for the incoming course number and return the proper ActionForward:

public ActionForward execute(

ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response) {

CourseSearchForm customerSearchForm = (CourseSearchForm) form;

ActionForward forward = null;

if (customerSearchForm.getCourseNumber().equalsIgnoreCase(“TT490”)) {

14 6108 ch11 8/9/04 11:33 AM Page 259

forward = mapping.findForward(“success”);

} else {

forward = mapping.findForward(“unknown”);

}

return forward;

}

With the following pieces in place, you can run the Struts application again. Start Tomcat,
open you browser, navigate to
http://localhost:8080/CourseCatalogStruts/courseSearch.jsp, enter “TT490” as the
course number, and supply any information in the remaining two fields. Click Submit to see
the usual results.jsp page. To see the call to unknown.jsp, click the Back button on your
browser and change TT490 to TT491, or any other string that strikes your fancy. The result is
an error from Struts to Tomcat stating that the request resource is unavailable. It is unavail-
able because you have not written unknown.jsp.

To create unknown.jsp in the Package Explorer, view select WebRoot in the
CourseCatalogStruts project. Press Ctrl+N to open the New dialog and then select J2EE, Web,
JSP. Click Next to go to the JSP Wizard page. Make sure File Path is set to
/CourseCatalogStruts/WebRoot, File Name is set to unknown.jsp, and Template to Use is set
to Standard JSP using Struts 1.1. Click Finish.

When the JSP editor opens, look for the following line:

This a struts page.

In that line’s place, put the following:

The following course was not found in the course catalog:

<bean:write name=”courseSearchForm” property=”courseNumber” />

Redeploy the application either by clicking the button next to the MyEclipse Application
Server button or by right-clicking the CourseCatalogStruts project and selecting Add and
Remove Project Deployments. When the Project Deployments dialog opens, select
CourseCatalogStruts as the project, select the Tomcat 5 server entry in the Deployments list,
and click Redeploy.

Once again, open your browser and go to
http://localhost:8080/CourseCatalogStruts/courseSearch.jsp. Enter a random course
number and arbitrary information into the two remaining fields. When you click Submit, the
ActionServlet will execute the CatalogSearchAction, which will ask the ActionServlet to
forward the request to unknown.jsp, which in turn displays your page (see Figure 11.14).

CHAPTER 11 Struts Development Using MyEclipse
260

14 6108 ch11 8/9/04 11:33 AM Page 260

FIGURE 11.14 The browser displaying output from unknown.jsp.

Replacing Java-Based Forms with DynaActionForm
The next Struts technology supported in MyEclipse is the DynaActionForm. You can use
DynaActionForm as a partial or complete replacement of your form, but when you use it as a
complete replacement, you lose the ability to programmatically control the form’s validation.
An alternative to programmatic validation would be the Validator framework, which is part
of the Jakarta Commons project. The Validator framework defines a reusable and extendible
rule-based validation framework that lets you declare validation rules in an XML file as well
as allows you to write your own rules that can be added to the framework. It is not directly
related to Struts and therefore can be used to validate any kind of object. However, MyEclipse
does not give you any direct support for the Validator framework. If you decide that the
Validator framework is appropriate for your work, you would have to add the supporting
pieces by hand. You will not be adding Validator support to any of the succeeding examples.

Let’s look at both uses of the DynaActionForm and how MyEclipse supports them. The first
one you will implement is the total replacement version. Rename the current form by right-
clicking on CourseSearchForm and selecting from the pop-up menu Refactor, Rename. When
the Rename Compilation Unit dialog opens, enter a new name of CourseSearchFormSave and
make sure that no check boxes are selected. Click OK.

At this stage, you have a number of editors open. Close them all by using the keyboard short-
cut Ctrl+Shift+F4. From the Package Explorer, double-click CourseCatalogStruts, WebRoot,
WEB-INF, struts-config.xml. Delete the entry for CourseSearchForm by deleting the form-
bean element between the form-beans tags. The new entry should be an open and close tag
for form-beans. Save the struts-config.xml file:

<form-beans >

</form-beans>

In the Outline view, right-click form-beans and select New Form from the pop-up menu.
When the New dialog opens, it opens on the same page you used when you first created the
Struts application. Enter in the Use Case field Course Search. This will fill in the Form Name
field with courseSearchForm, which is the name that will be entered in struts-config.xml as

261
Implementing a Web Application Using a Struts Module

14 6108 ch11 8/9/04 11:33 AM Page 261

the form name. In Form Impl, click Dynamic FormBean, which changes the Dynamic Type
field to use org.apache.struts.action.DynaActionForm. Click Add in the Form Properties
section and enter the three field names courseNumber, courseName, and instructor, all with
a type of java.lang.String. Remember to click Close when the Form Property dialog opens
for the fourth time. Click Finish. The struts-config.xml file has been changed but not
saved, so save the file.

The new form-beans entry now contains a type of
org.apache.struts.action.DynaActionForm and three form-property elements, one for each
of the form fields you entered. Take a look at your project: CourseSearchForm is not defined
anywhere. In order for any code to access the form, it must now cast the form to be an object
of type DynaActionForm and use the form’s API to access the data:

<form-beans >

<form-bean name=”courseSearchForm” type=”org.apache.struts.action.DynaActionForm”>

<form-property name=”instructor” type=”java.lang.String” />

<form-property name=”courseName” type=”java.lang.String” />

<form-property name=”courseNumber” type=”java.lang.String” />

</form-bean>

</form-beans>

Open CourseSearchAction and change any references to CourseSearchForm to
DynaActionForm. Remember to let the editor help you in typing out DynaActionForm
(Ctrl+spacebar) and in correcting the import list (Ctrl+Shift+O). Also, change if() to look up
the course number field using DynaActionForm.get():

public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response) {

DynaActionForm customerSearchForm = (DynaActionForm) form;

ActionForward forward = null;

String courseNumber = (String) customerSearchForm.get(“courseNumber”);

if (courseNumber.equalsIgnoreCase(“TT490”)) {

forward = mapping.findForward(“success”);

} else {

forward = mapping.findForward(“unknown”);

}

return forward;

}

Save the file. Redeploy the Web application, restarting Tomcat if necessary. Your results
should be the same as before: When you enter TT490 as the course number, the results.jsp
page is displayed, and when you enter anything else as a course number, you get
unknown.jsp. A different behavior will be when you leave any or all of the fields as blank, the
ActionServlet does not send the form back to courseSearch.jsp; instead, it goes to either
results.jsp or unknown.jsp.

CHAPTER 11 Struts Development Using MyEclipse
262

14 6108 ch11 8/9/04 11:33 AM Page 262

Using a DynaActionForm, as convenient as the previous example portrays it to be, does lose
validation that can be replaced using the Validator framework. Another option is to create a
subclass of DynaActionForm, in conjunction with the definitions in struts-config.xml, and
add validate() to the subclass. The use of this combination entails the following tasks:

n Subclassing DynaActionForm and adding validate().

n Changing the form-bean type entry to the subclass.

Let’s create the hybrid DynaActionForm class. By
rights, if you were doing this from scratch, you
would use the MyEclipse Form Wizard to get you
to where we are now, and the wizard would
perform the following steps. Select the
eclipse.kickstart.struts.form package in the
CourseCatalogStruts project. Press Ctrl+N to open
the New Java Class dialog; then select Java, Class
and click Next. Enter in the Name field
CourseSearchForm and click the Browse button
next to the Superclass field. Entering the string
dyn in the Superclass Selection dialog will bring
DynaActionForm to the top of the list. Select it and
click OK. The New dialog now has enough infor-
mation to generate the stub class (see Figure
11.15). Click Finish.

When the CourseSearchForm opens in the Java
editor, right-click anywhere in the editor and from
the pop-up menu select Source, Override/
Implement Methods. The Override/Implement

Methods dialog lists all the concrete and abstract methods available to your subclass. Scroll
and open the ActionForm node, check validate(ActionMapping, HttpservletRequest), and
click OK (see Figure 11.16).

Change validate() to perform a check on the form fields by getting the current field value
from itself using the get() method and the desired field name:

public ActionErrors validate(

ActionMapping mapping,

HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

String field = (String) get(“instructor”);

if (field.trim().length() == 0) {

errors.add(“instructor”, new ActionMessage(“instructor.error”));

}

263
Implementing a Web Application Using a Struts Module

FIGURE 11.15 The New Java Class dialog
with the information needed to generate the
DynaActionForm subclass.

14 6108 ch11 8/9/04 11:33 AM Page 263

field = (String) get(“courseNumber”);

if (field.trim().length() == 0) {

errors.add(“courseNumber”, new ActionMessage(“courseNumber.error”));

}

field = (String) get(“courseName”);

if (field.trim().length() == 0) {

errors.add(“courseName”, new ActionMessage(“name.error”));

}

return errors;

}

CHAPTER 11 Struts Development Using MyEclipse
264

FIGURE 11.16 The list of available methods for CourseSearchForm to implement or override.

Now that you have a subclass of DynaActionForm, add it to struts-config.xml in the form-
bean element type attribute (the shaded code):

<form-bean

dynamic=”true”

name=”courseSearchForm”

type=”eclipse.kickstart.struts.form.CourseSearchForm”>

<form-property name=”instructor” type=”java.lang.String” />

<form-property name=”courseNumber” type=”java.lang.String” />

<form-property name=”courseName” type=”java.lang.String” />

</form-bean>

14 6108 ch11 8/9/04 11:33 AM Page 264

Redeploy the application by selecting Add and Remove Project Deployments or by clicking
the Redeployment button in the toolbar. Once you are redeployed, restart Tomcat, open your
browser, and navigate to http://localhost:8080/CourseCatalogStruts/courseSearch.jsp.
Click Submit without entering any information. The error messages will again be displayed.

Adding Global Exceptions
Action forwards define explicit targets that can be called by Action objects. Global exceptions
define the flow for an exception that is not handled by your Web application. When an
exception is caught by the ActionServlet and an exception element is defined within
struts-config.xml, the framework retrieves the error message from the file where the
messages are defined, wraps the string in an ActionMessage object, puts the ActionMessage
object within an ActionErrors object, and passes the ActionErrors object to the forward
target defined within the exception element. Let’s create a global exception element that
handles IOExceptions by sending an error message to an error page.

265
Implementing a Web Application Using a Struts Module

S H O P TA L K
DynaActionForm Versus Subclassing ActionForm

If the DynaActionForm is so good, why is the ActionForm still supported in Struts? Why bother
using one over the other? The answer is one of convenience: If you prefer to update configuration
files instead of code, the DynaActionForm is a great way to go. Conventional wisdom goes like
this: When a change needs to be made, you update struts-config.xml and continue on your
way. Subclasses of ActionForm need to have code changed, which means that you have to take
the file out of source control, you need to open an IDE to make the change, you need to run your
tests to make sure that the change doesn’t break anything or introduce new bugs, and so on.

I have to admit to feeling ambivalent about the DynaActionForm. As much as the ActionForm can
appear to be more work, this is not as big a deal as it seems. If you are going to make a change to
a form using struts-config.xml, you still need to take the file out of source control, you still
need to update code somewhere to use the new field (or not use a deleted field), and you still
need to run your tests to make sure that the change to the configuration file doesn’t break
anything else. (In my opinion, configuration file changes can create bugs that are much harder to
track down than bugs created by code changes, unless you have good unit tests in place to prove
otherwise.)

But what about the hassle of creating the Java class that maps to the form, defines the fields and
their types, as well as the getter and setter methods? As you have seen in previous chapters, Eclipse
lets you define a class using a wizard and takes care of generating the code to wrap access to
instance fields from the editor. Also, defining the form using MyEclipse means the plug-in creates
the ActionForm subclass for you with minimal effort.

There is one other advantage to creating the form as a subclass of ActionForm: The subclass’s API
to the instance fields is type-safe, whereas the DynaActionForm relies on you casting the various
accesses to the data to the proper type.

14 6108 ch11 8/9/04 11:33 AM Page 265

Close all your editor windows except for struts-config.xml (double-click it to open it in the
MyEclipse Struts editor if it is not already opened). In the Outline view, right-click global-
exceptions and select from the pop-up menu New Exception to open the New Struts
Exception dialog.

CHAPTER 11 Struts Development Using MyEclipse
266

FIGURE 11.17 The New Struts Exception
dialog.

The Struts 1.1 Exception Declaration page is
divided up into three sections (see Figure 11.17):

n The location of the exception definition and
its scope (global to all Actions or local to
one)

n The type of exception this definition will
handle, the error message to be displayed
when it occurs, and the path to where the
exception will be forwarded

n The type of the Java object that will handle
the incoming exception and a resource file
where it can look up the error message
using the key from the previous section

All the fields in the wizard are required except for
Action Scope and Exception Bundle. The excep-

tion will be assigned to the global-exception element if no action scope is declared; other-
wise, the exception will be local to a particular action. The exception bundle defines a prop-
erties file that contains the error messages to be used when an exception is caught; if no file
is declared, the file declared in message-resources is used.

Set the fields in the New Struts Exception dialog as follows:

n Action Scope—Leave this field blank.

n Exception Key—ioe.error.

n Exception Type—java.io.IOException. (Click the Browse button and use the dialog to
find it.)

n Exception Path—/error.jsp.

n Exception Handler— org.apache.struts.action.ExceptionHandler.

n Exception Bundle—Leave this field blank.

Click Finish and save struts-config.xml. The global-exceptions element is ready for use.
The exception element does not declare the use of org.apache.struts.action.
ExceptionHandler because it is the default:

14 6108 ch11 8/9/04 11:33 AM Page 266

<global-exceptions >

<exception

key=”ioe.error”

path=”/error.jsp”

type=”java.io.IOException” />

</global-exceptions>

For this first example of Struts-handled exceptions, you need to create an error page. Select
CourseCatalogStruts, WebRoot and then press Ctrl+N to open the New dialog. Select J2EE,
Web, JSP and click Next. In the JSP Wizard page, change the File Name field to error.jsp
and leave the remaining two fields alone (Template to Use should be set to Standard JSP
Using Struts 1.1). Click Finish.

In the error.jsp file, look for the line that reads

This a struts page.

In place of this line, put in code to retrieve the ActionErrors object that is created when a
java.io.IOException is caught:

<h1>Oh, no! An error happened!</h1>

<html:errors />

Open the ApplicationResources.properties file found under CourseCatalogStruts, src,
eclipse.kickstart.struts. Add a message with a key of ioe.error and save the file:

ioe.error=Major error trying to retrieve the data from the main server.

The only thing left to do is have the CourseSearchAction throw an exception. Open
CourseSearchAction in the Java editor and modify the condition to throw an
java.io.IOException when a course number of “foobar” is entered. Make sure you add the
throws Exception clause to execute():

public ActionForward execute(

ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response) throws Exception {

DynaActionForm customerSearchForm = (DynaActionForm) form;

String courseNumber = (String) customerSearchForm.get(“courseNumber”);

ActionForward forward = null;

if (courseNumber.equalsIgnoreCase(“TT490”)) {

forward = mapping.findForward(“success”);

267
Implementing a Web Application Using a Struts Module

14 6108 ch11 8/9/04 11:33 AM Page 267

} else if (courseNumber.equalsIgnoreCase(“foobar”)) {

throw new IOException(“Read/write error!”);

} else {

forward = mapping.findForward(“unknown”);

}

return forward;

}

Stop Tomcat. The struts-config.xml file has been changed, and the only way for
ActionServlet to reread the file is to be reloaded. Redeploy the CourseCatalogStruts applica-
tion using the Add and Remove Project Deployments dialog. Restart Tomcat within Eclipse,
and when Tomcat has completed its startup, open your browser and navigate to
http://localhost:8080/CourseCatalogStruts/courseSearch.jsp. Enter foobar into the
course number field, some arbitrary strings into the remaining two fields, and click Submit.
The error.jsp page will display with the message from the ApplicationResources.proper-
ties file (see Figure 11.18).

CHAPTER 11 Struts Development Using MyEclipse
268

FIGURE 11.18 The error.jsp page displaying the error message from the thrown IOException.

If you subclassed org.apache.struts.action.ExceptionHandler to create your own excep-
tion handler, you could take the incoming exception and perform some intermediate opera-
tion before forwarding the request to the target forward.

Configuring a Struts Datasource
Another element defined within struts-config.xml is data-source. The definition of data-
source allows an Action to access a JDBC datasource from within your application. Because a
previous chapter defined a Hypersonic database, you will deploy your Struts-based applica-
tion to JBoss and then you will modify CatalogSearchAction to access the data-source
defined in struts-config.xml.

If you have not installed and downloaded JBoss, refer to the “Downloading and Installing
JBoss” section of Chapter 9. It will walk you through the process of downloading and
installing JBoss, the configuration of the JBoss-supplied Hypersonic database, the execution
of the SQL to create a table, and the insertion of a few rows into the table.

14 6108 ch11 8/9/04 11:33 AM Page 268

On the assumption that you have JBoss downloaded, installed, and configured with its
Hypersonic database set up with data, let’s once again walk through creating a deployment
configuration so that you can deploy to JBoss and test whether your Web application is still
functioning.

Open the Project Deployments dialog by clicking
the button next to the MyEclipse app server
button on the toolbar, or you can right-click the
CourseCatalogStruts project and select MyEclipse,
Add and Remove Project Deployments from the
pop-up menu. When the Project Deployments
dialog opens, the Tomcat 5 deployment configura-
tion appears as its only entry (see Figure 11.19).
Select CourseCatalogStruts as the project and click
Add. When the New Deployment dialog opens,
select JBoss 3 as the server and select the deploy
type Exploded Archive. Click Finish to return to
the Project Deployments dialog, which now lists
two deployment configurations: Tomcat 5 and
JBoss 3. Click OK.

Once you selected JBoss as a deployment target,
MyEclipse took care of deploying the application

to it. If the configuration and deployment went well, you can call your Web application from
a browser and see the input and output pages as you did before. To check the application,
stop Tomcat (from the toolbar, select Tomcat 5, Stop) and then start JBoss (from the toolbar,
select JBoss 3, Start). You cannot have Tomcat and JBoss running at the same time using their
default configurations because they both use port 8080. JBoss is ready to go when you see the
message telling you how long it took JBoss to start:

18:40:14,934 INFO [Server] JBoss (MX MicroKernel) [3.2.3 (build:

➥CVSTag=JBoss_3_2_3 date=200311301445)] Started in 26s:137ms

Open your browser and navigate to the usual spot,
http://localhost:8080/CourseCatalogStruts/courseSearch.jsp. To make sure your appli-
cation is functioning, try the following scenarios:

1. Enter a course number of TT490 with any instructor and any course name. When you
click Submit, you should get the results.jsp output. Click the Back button on your
browser. Leave the instructor and name fields alone for the rest of the scenarios.

2. Change the course number to TT491 and click Submit. The output from unknown.jsp
should appear. Click the Back button.

3. Change the course number to foobar and click Submit. The error.jsp page will display
the “Oh, no! An error happened!” page.

269
Implementing a Web Application Using a Struts Module

FIGURE 11.19 The Project Deployments
dialog with the Tomcat deployment configuration.

14 6108 ch11 8/9/04 11:33 AM Page 269

If you were developing this as a real Web application, you would have had test fixtures in
place to run these tests for you.

Before you can configure the Struts datasource, you have to put the JDBC driver you intend
to use someplace where the Struts framework can find it and use it. If you had an external
database running, this example could have been run from within Tomcat, as any JDBC driver
will do as long as it is available to Struts. The use of JBoss is purely one of convenience.

Right-click CourseCatalogStruts, WebRoot, WEB-INF, lib and then select Import from the
pop-up menu. When the Import dialog opens, select File System as the import source and
click Next.

On the File System page, you need to navigate to the JBoss directory where the HSQL driver
is located, which is <JBoss install directory>\server\default\lib. Click the top Browse
button and navigate to the proper directory. When you have found the lib directory, click
OK to enter the path into the From Directory field. The left window lists lib as a folder, and
the right window lists the JAR files the directory contains. Put a check next to hsqldb.jar.
The Into Folder field must read CourseCatalogStruts/WebRoot/WEB-INF/lib (see Figure
11.20). Click Finish. The hsqldb.jar file is now located in your project WEB-INF/lib
directory.

CHAPTER 11 Struts Development Using MyEclipse
270

FIGURE 11.20 The File System import page with the required data.

One last thing before you can configure the struts-config.xml file: You need to put the
HSQL driver JAR file in the build path of your project. The import should have taken care of
that, but to be sure, from the Package Explorer open the Properties dialog by right-clicking
the CourseCatalogStruts project name and selecting Properties from the pop-up menu. When

14 6108 ch11 8/9/04 11:33 AM Page 270

the Properties dialog opens, select Java Build Path from the left and the Libraries tab from the
right. The hsqldb.jar file should be one of the JAR files in the build path of your project. If
it is not, click Add External JARs and navigate to your project workspace WEB-INF/lib direc-
tory and include it. If the hsqldb.jar file is there, click OK to close the Properties dialog.

271
Implementing a Web Application Using a Struts Module

FIGURE 11.21 The New DataSource dialog
displaying the Struts 1.1 DataSource Declaration
page.

Open struts-config.xml. In the Outline view,
right-click data-sources and select New
DataSource from the pop-up menu to open the
New DataSource dialog, where you define the
Struts DataSource (see Figure 11.21). The first three
fields are already filled and should be set as
follows:

n Config/Module Path—
/CourseCatalogStruts/WebRoot/

WEB-INF/struts-config.xml

n Key—org.apache.struts.action.

DATA_SOURCE

n Type—org.apache.struts.util.

GenericDataSource

The next section contains JDBC driver
information:

n Description—This field can be left blank.

n Driver Class—org.hsqldb.jdbcDriver. (Use the Browse button to find it using the
Superclass selection dialog.)

n Url—jdbc:hsqldb:hsql://localhost:1701. (This information is taken from the
hsqldb-ds.xml file supplied with JBoss.)

n User—sa.

n Password—Leave this field blank.

The third section is datasource-configuration data:

n Login Time Out—Leave this field blank.

n Min Count—1. (This is the minimum number of connections to use.)

n Max Count—5. (This is the maximum number of connections to use.)

n Auto Commit—Check this option.

n Read Only—Leave this option unchecked.

14 6108 ch11 8/9/04 11:33 AM Page 271

Once all the preceding information is entered, click Finish. The data-sources element now
contains the information needed to configure the default Struts datasource,
GenericDataSource, at runtime:

<data-sources >

<data-source>

<set-property property=”password” value=”” />

<set-property property=”minCount” value=”1” />

<set-property property=”maxCount” value=”5” />

<set-property property=”user” value=”sa” />

<set-property property=”driverClass” value=”org.hsqldb.jdbcDriver” />

<set-property property=”description” value=”” />

<set-property property=”url” value=”jdbc:hsqldb:hsql://localhost:1701” />

<set-property property=”readOnly” value=”false” />

<set-property property=”autoCommit” value=”true” />

<set-property property=”loginTimeout” value=”” />

</data-source>

</data-sources>

Now that Struts has a JDBC datasource available for use by the Action, let’s update the code
for CourseSearchAction to use it. The first conditional is the only piece that has changed. No
matter which instructor name is entered, the code will always use the name field from the
customer table in the Hypersonic database:

if (courseNumber.equalsIgnoreCase(“TT490”)) {

DataSource ds = getDataSource(request);

Connection con = ds.getConnection();

Statement stmt = null;

ResultSet rs = null;

try {

stmt = con.createStatement();

rs = stmt.executeQuery(

“select * from customer where phone_number=’1-222-333-4444’”);

rs.next();

String name = rs.getString(“name”);

customerSearchForm.set(“instructor”, name);

} catch (SQLException e) {

e.printStackTrace();

} finally {

con.close();

}

forward = mapping.findForward(“success”);

CHAPTER 11 Struts Development Using MyEclipse
272

14 6108 ch11 8/9/04 11:33 AM Page 272

} else if (courseNumber.equalsIgnoreCase(“foobar”)) {

throw new IOException(“Read/write error!”);

} else {

forward = mapping.findForward(“unknown”);

}

Stop JBoss, redeploy CourseCatalogStruts, and restart JBoss. Open your browser to
http://localhost:8080/CourseCatalogStruts/courseSearch.jsp and enter TT490 for the
course number, John Smith as the instructor, and Eclipse for the course name. Click Submit.
The results.jsp output should have an instructor name of Ronald Weasley (see Figure
11.22).

273
In Brief

FIGURE 11.22 The final output of results.jsp showing the substitution of the name retrieved from the
Hypersonic database.

Two Struts framework areas you are not going to try out using MyEclipse are the creation of
controller components and the creation of message-resources because there is no direct
support for either technology within MyEclipse.

In Brief
Struts developments using MyEclipse is easier than pulling the various pieces of the Struts
framework together by hand. Not all aspects of Struts are supported within the plug-in,
specifically the Validator framework and the controller configuration within struts-
config.xml, but overall the support is solid and the various Struts pieces work with a
minimum of effort.

n Struts projects are created from Web projects. Adding Struts capabilities to a Web project
is accomplished by right-clicking the project and selecting MyEclipse, Add Struts
Capabilities.

n Deployment of a Struts application to Tomcat is handled by a deployment wizard. The
wizard works in conjunction with application server information entered in the
Preferences dialog under MyEclipse, Application Servers.

14 6108 ch11 8/9/04 11:33 AM Page 273

n Global forwards are available to all Actions defined within struts-config.xml.

n DynaActionForm allows you to define a form without having to write an associated Java
class, but you lose validation capability unless you create a subclass of DynaActionForm
and include validate() or use the Validator framework.

n The global-exceptions element is supported by a MyEclipse wizard. Exceptions thrown
by Action objects are caught by the ActionServlet and redirected to the forward
target defined in the global-exception element.

n JDBC datasources are supported through a MyEclipse wizard that understands how to
configure the default Struts JDBC datasource GenericDataSource.

CHAPTER 11 Struts Development Using MyEclipse
274

14 6108 ch11 8/9/04 11:33 AM Page 274

